LETTERS TO THE EDITOR

doi:10.1093/cvr/cvx136
Published online 28 July 2017

Future strategies for acute cardioprotection: ‘melatonin as promising therapy’

To the Editor,

We read with great interest the review article written by Haussen et al., about new treatment strategies for reducing acute myocardial ischaemia/reperfusion injury (IRI). The authors should be congratulated for this excellent review. However, there is an additional pharmacological therapy, which has recently undergone clinical investigation to reduce myocardial IRI in reperfused ST-segment elevation myocardial infarction (STEMI) patients. Several investigations have confirmed the ameliorative effects of melatonin on abnormal function and IRI in cardiac tissue, with the administration of pharmacologic doses of melatonin prior to ischaemia and/or during reperfusion. Recently, our group published the results of the Melatonin Adjunct in acute myocardial Infarction treated with Angioplasty (MARIA) trial. In the original study, melatonin was not associated with a significant reduction in myocardial infarct size compared with placebo. Arguably, the relatively long median time (>3.3 h) from symptom onset to reperfusion negated the benefits of melatonin in reducing myocardial IRI. We carried out a post hoc analysis to assess whether the effect of melatonin was affected by the timing of reperfusion. We found that melatonin given <2.5 h after symptom onset reduces myocardial infarct size by approximately 40%, measured by cardiovascular magnetic resonance.

Funding

This letter to the editor was supported by the Institute Carlos III (ISCIII) (PI15/01260), General Branch Evaluation and Research Promotion, State Plan of Scientific and Technical Research and Innovation 2013–2016 and the European Regional Development Health Fund - FEDER-, related to the topic of this study.

Conflict of interest: A.D.-R. and P.A.-G. have a patent for the use of melatonin in ST-elevation myocardial infarction (P 201400743).

References


Alberto Dominguez-Rodriguez* and Pedro Abreu-Gonzalez
Department of Cardiology, Hospital Universitario de Canarias, Ofra sin La Cuesta E-38320, Santa Cruz de Tenerife, Spain and Facultad de Ciencias de la Salud, Universidad Europea de Canarias, La Orotava, Santa Cruz de Tenerife, Spain
*Corresponding author. Tel. +34 922 679040; fax: +34 922 677284. Email: adrvdg@hotmail.com

doi:10.1093/cvr/cvx137
Published online 28 July 2017

Melatonin as a cardioprotective therapy following ST-segment elevation myocardial infarction: is it really promising? Reply

We thank Dominguez-Rodriguez and Abreu-Gonzalez1 for their comment on our ESC Working Group (WG) Position Paper on cardioprotection, in which they propose melatonin to be a promising cardioprotection strategy. This was based, in part, on the recently published results of the Melatonin Adjunct in acute myocardial Infarction treated with Angioplasty (MARIA) trial, in which they investigated the cardioprotective effects of melatonin in ST-segment elevation myocardial infarction (STEMI) patients treated by primary percutaneous coronary intervention (PPCI). However, in the MARIA trial, the authors found that intravenous and intracoronary melatonin administered at the time of reperfusion failed to reduce acute myocardial infarct (MI) size (assessed by cardiac MRI). In fact, in that study, melatonin was found to actually worsen adverse post-MI left ventricular (LV) remodelling when compared to placebo (with significantly higher left LV end diastolic and systolic volumes, and lower ejection fraction on cardiac MRI at 4 months following PPCI). The cause of this detrimental effect of melatonin on post-MI LV remodelling is not clear, but may be related to its reported effects on increasing myocardial accumulation of collagen and glycosaminoglycans following infarction. In another study, oral melatonin started on the night following PPCI and continued daily during the hospitalisation, had mixed results on enzymatic MI size following STEMI (CK-MB and hs-Troponin-T at 6 h post-PPCI), although the study was underpowered (only 40 patients), and the dosing regimen was suboptimal. Another clinical study reported cardioprotective effects with 5 days’ pre-treatment with melatonin in patients undergoing coronary artery bypass graft (CABG) surgery, as evidenced by less peri-operative myocardial injury when compared to placebo pre-treatment, suggesting that melatonin may be more effective as a cardioprotective agent when administered prior to index ischaemia (as in CABG surgery) rather than at the time of reperfusion (as in STEMI patients).

The neutral findings of the MARIA trial on a background of promising experimental data with melatonin, underscores the challenges in translating novel cardioprotective therapies from the bench to the bedside, as highlighted in our ESC WG Position paper. It is important to note that the experimental animal data showing beneficial effects with melatonin on MI size were largely restricted to small animal MI models with no comorbidities and comediations, and most of these experimental studies had examined the long-term effects of melatonin on post-MI adverse remodelling. Of note, in a clinically relevant large animal closed-chest reperfused porcine MI model, it was reported that intravenous and intracoronary melatonin administered prior to reperfusion failed to reduce MI size, suggesting inconsistent cardioprotection with melatonin.
even in the experimental setting. These studies highlight the importance of thoroughly testing novel cardioprotective therapies in the laboratory setting, before proceeding with clinical cardioprotection studies.

In a post hoc subgroup analysis of the MARIA trial, Dominguez-Rodriguez and Abreu-Gonzalez found that melatonin reduced MI size in STEMI patients presenting within 2.5 h of chest pain onset, 10 a finding which is consistent with studies showing beneficial effects with cardioprotective therapies, such as adenosine and exendin-4, administered to patients presenting with short ischaemic times (<3 h).11–13 Whether the detrimental effects of melatonin on post-MI LV remodelling observed in the MARIA study were also observed in this subgroup analysis was not reported. Moreover, in patients presenting with ischaemic times of >3.5 h, melatonin actually increased MI size when compared to placebo, suggesting a detrimental effect of melatonin in these patients.10

In summary, the aim of our ESC WG Position Paper on cardioprotection had been to review the current status of cardioprotection, highlight promising new cardioprotective targets and therapies, and unfortunately, the current clinical evidence does not appear to support melatonin as a promising therapy for reducing MI size in reperfused STEMI patients.

Conflict of interest: D.G.D. served as consultant to Neurovive Pharmaceuticals. H.E.B. is shareholder of CellAegis Inc. M.O. was a consultant for Neurovive Pharmaceuticals. F.P. received a grant from Bayer and Servier, and lecture honoraria from Novartis, Servier and MSD. R.S. served as consultant AMGEN, Servier, Sanofi, Recordati, G.H. served as a consultant to Servier. P.F. is a founder and CEO of Pharmahungary, a group of R&D companies. All other authors have no relevant disclosures.

References