UNIVERSITY OF CAPE TOWN

FACULTY OF ENGINEERING & THE BUILT ENVIRONMENT (POSTGRADUATE)

2017

Postal Address: University of Cape Town
Private Bag X3
7701 RONDEBOSCH

Dean's & Faculty Offices: New Engineering Building
Upper Campus

Office Hours: Mondays to Fridays: 08h30 - 16h30

Fax: (021) 650 3782

Telephones:
Dean's Office (021) 650 2702
Faculty Office (021) 650 2699
Accounts and Fees (021) 650 1704
Admissions (021) 650 2128

Internet:
UCT's Home Page http://www.uct.ac.za
Engineering & the Built Environment Home Page http://www.ebe.uct.ac.za
Dean's Office ebe-dean@uct.ac.za
Faculty Office ebe-faculty@uct.ac.za
International Academic Programmes Office int-iapo@uct.ac.za

The Registrar's and General Enquiries offices are located in the Bremner Building and remain open during the lunch hour. The Admissions Office and Student Records Office are located in the Masingene Building, Middle Campus, and are open from 08h30 to 16h30. The Cashier's Office is located in Kramer Building, Middle Campus, and is open from 09h00 to 15h30.

This handbook is part of a series that consists of
Book 1: Undergraduate Prospectus
Book 2: Authorities and information of record
Book 3: General Rules and Policies
Book 4: Academic Calendar and Meetings
Book 5: Student Support and Services
Book 6-11: Handbooks of the Faculties of Commerce, Engineering & the Built Environment, Health Sciences, Humanities, Law, Science
Book 12: Student Fees
Book 13: Bursary and Loan Opportunities for Undergraduate Study
Book 14: Financial assistance for Postgraduate Study and Postdoctoral Research
The University has made every effort to ensure the accuracy of the information in its handbooks. However, we reserve the right at any time, if circumstances dictate (for example, if there are not sufficient students registered), to

(i) make alterations or changes to any of the published details of the opportunities on offer; or
(ii) add to or withdraw any of the opportunities on offer.

Our students are given every assurance that changes to opportunities will only be made under compelling circumstances and students will be fully informed as soon as possible.
CONTENTS

Guide to the usage of this Handbook.. 5

General Information ... 6
- Officers in the Faculty ... 6
- Student Councils .. 7
- Postgraduate Centre ... 8
- Distinguished Teachers... 8
- Fellows in the Faculty ... 8
- Minimum Requirements for Admission .. 8
- Degrees and Diplomas Offered in the Faculty .. 8
- Term dates .. 9
- Lecture periods .. 9
- Lecture timetable .. 9
- Course Codes ... 10
- Course Codes – Explanatory Notes .. 10
- Courses: Guide To Terminology .. 11
- Credit System ... 12
- Ethics Clearance .. 12
- Honours Degrees .. 13
- Master's Degrees ... 30
- Doctoral Degrees ... 73

Departments in the Faculty and Courses Offered .. 76
- Architecture, Planning and Geomatics .. 76
- Chemical Engineering .. 105
- Civil Engineering .. 122
- Construction Economics and Management .. 151
- Electrical Engineering .. 168
- Mechanical Engineering .. 194

Departments in Other Faculties and Courses Offered ... 217
- Departments Established in the Faculty of Commerce .. 217
 - College of Accounting ... 217
- Centres and Departments Established in the Faculty of Humanities .. 217
 - School of African & Gender Studies, Anthropology & Linguistics .. 217
- Departments Established in the Faculty of Law ... 219
 - Commercial Law ... 219
 - Public Law ... 219

Centres and other Entities Established in the Faculty .. 221
- African Centre for Cities .. 221
- Blast Impact & Survivability Research Unit (BISRU) ... 221
- Catalysis Institute .. 222
- Catalysis Institute: Centre for Catalysis Research (Cat Centre) .. 223
- Catalysis Institute: DST - NRF Centre of Excellence in Catalysis (e-change) .. 223
- Catalysis Institute: DST Hydrogen Catalysis Competence Centre (HySA/ Catalysis) 224
- Centre for Bioprocess Engineering Research (CeBER) ... 224
- Centre for Materials Engineering (CME) ... 225
- Centre for Minerals Research (CMR) ... 226
- Centre for Research in Computational & Applied Mechanics (CERECAM) .. 227
- Centre for Research in Engineering Education (CREE) .. 227
- Centre for Transport Studies .. 228
- Concrete Materials and Structural Integrity Research Unit (CoMSIRU) ... 228
- Crystallisation and Precipitation Research Unit (CPU) ... 229
- Energy Research Centre (ERC) .. 230
Guide to the usage of this Handbook

The following is a general overview of the structure of this Handbook for the guidance of users. The contents are organised in a number of different sections (see below) each of which has a particular focus. The sections are interlinked by cross-references where relevant.

(a) General Information: This section includes information on the professional status and recognition of the Faculty's degrees, its links with professional bodies and the list of qualifications offered. It also includes lists of the various prizes, medals and scholarships awarded on academic merit and contains information on the criteria for the Dean's Merit List.

(b) Rules for degrees: This section covers the Faculty rules for each of the various degree programmes. These rules should be read in conjunction with the general University rules in the General Rules and Policies Handbook (Handbook 3). Students are expected to acquaint themselves with the rules in both Handbooks and to check annually whether the rules or curriculum requirements have changed since the last edition. Important rules: All students must familiarise themselves with the Degree Rules in this Handbook. In addition, students must refer to Handbook 3, General Rules and Policies and particularly take note of the following:

- rules relating to registration and examinations;
- rules relating to changes of curriculum;
- rules relating to leave of absence;
- rules on Academic Conduct, N.B. the rules concerning dishonest conduct and plagiarism.

Detailed information on the undergraduate entrance requirements can be found in the University Prospectus. The PhD Degree rules are published in Handbook 3, General Rules and Policies.

(c) Departments and Programmes: This section contains entries for each department in the Faculty. Each lists members of staff, a summary of laboratory, workshop and other facilities, the research entities, and the programmes of study administered by each department. The curriculum for each programme (list of required courses) is set out in table form. The curriculum tables must be read together with (cross-referenced to) the lists of courses in the Courses Offered section which is described under (e) below.

(d) Centres/Units established in the Faculty and Centres, Departments, Schools and Units Established in other Faculties: There are entries for the principal Faculty entities/units which do not fall directly under academic departments e.g. the Centre for Research in Engineering Education and the Continuing Professional Development Programme and entries for the centres, units and departments in other faculties which offer courses for students registered in the Faculty. This is cross referenced to the list of courses offered in section (e).

(e) Courses Offered: The full list and descriptions of courses offered by the Faculty, both undergraduate and postgraduate, is set out in this section in alpha-numeric order (i.e. based on the course code prefix) which identifies the department offering the course and the course number. The courses offered by other faculties which are more commonly taken by students in the Faculty of Engineering & the Built Environment are also listed and described. N.B. A key (guide) to the course code system, the credit system and terminology (definitions) is set out at the beginning of this section.
GENERAL INFORMATION

Officers in the Faculty

Academic

Dean of the Faculty:
Professor AE Lewis, PrEng BSc(Eng)Chem MSc(Eng) PhD Cape Town FSAIChE FSAIMM MASSAF FSAAE FIChemE

Personal Assistant to the Dean:
M Scheepers

Deputy Deans:
Associate Professor BI Collier-Reed, PrEng MSc(Eng) PhD Cape Town FSAIMechE
Professor P Moyo, Pr Eng BSc(Eng) Zimbabwe MSc(Eng) Newcastle-upon-Tyne PhD Nanyang MISAICE MIABSE MISHMII
T Winkler, BSc(TRP) MUD Witwatersrand PhD British Columbia

Heads of Departments:
Architectural, Planning and Geomatics:
Professor T Berlinda, Dipl Arch, USI, PhD (Arch & Design) Italy

Chemical Engineering:
Professor E van Steen, MSc(Eng) Eindhoven PhD Karlsruhe FSAIChE FSAAE

Civil Engineering:
Professor NP Armitage, PrEng BSc(Eng) Natal MSc(Eng) Cape Town PhD Stell FSAICE FWISA FSAIMunE Mem IAHR Mem IAHS FIWA

Construction Economics and Management:
Associate Professor KA Michell, BSc(QS) MPhil Cape Town PhD Salford PrQS PMAQS MRICS MSAFMA

Electrical Engineering:
Professor ES Boje, PrEng BSc(Eng) Wits MSc(Eng) PhD Natal SMSAIMC MIEEE

Mechanical Engineering:
Professor RD Knutsen, BSc PhD Cape Town MSAIMM MSAIMechE

Convener Professional Communication Studies:
Associate Professor J English, BA MPhil Cape Town PhD Glasgow Caledonian

Academic Administration

Faculty Manager (Academic Administration):
G Valodia, BA Hons HDE Cape Town

Undergraduate Manager (Academic Administration):
D Chuter, BA HDE Cape Town

Postgraduate Manager (Academic Administration):
I Dilraj, BSoc Sc (Hons) Cape Town
Administrative Assistants:
D Botha, BPrimEd Wits
KW Cawood, BA (Hons) Stell BSoc Sc (Hons) Cape Town
B Cleenwerck, BSocSc LLB Cape Town
T Rossouw, BA(Gen) NC (Archival Studies) UNISA
L Williams, BA Cape Town

Senior Secretary - Receptionist:
N Hartley, NDip Bus Mgmt College of Cape Town

Clinical Psychologist
N Ahmed, MA (Clinical Psychology) MA (Research Psychology) Cape Town

Communications, Marketing and Development

Manager:
M Hilton

Alumni Officer:
M Ralane, BA (Media Studies) Cape Town

Finance

Faculty Finance Manager:
B Daubenton, HND Civil Engineering Structures Cape Technikon

Assistant Faculty Finance Manager:
S Kriel, BCom Cape Town

Senior Finance Officer:
M Hyland

Finance Officer:
A Burmeister, BA LLB UNISA

Human Resources

Human Resources Officer:
Z Matthews, BAdmin UWC

IT and Facilities

Manager:
TBA

Student Councils
The Engineering & the Built Environment Student Council in the Faculty represents the interests of the student body. The EBESC and its counterparts in other faculties are concerned with promoting the academic and social interests of the students they represent. A Faculty Postgraduate Student Council represents the specific interests of postgraduate students.
Postgraduate Centre
The Postgraduate Centre is situated in the Otto Beit Building, Upper Campus. This state-of-the-art facility houses the executive committee of the Postgraduate Students Association (PGSA) as well as the Postgraduate Funding Office. The centre is equipped with IT facilities and includes a seminar room. This facility is open to all Master’s and Doctoral students as well as postdoctoral research fellows. Postgraduates are encouraged to make full use of this centre, in particular, the Funding Office, which administers all postgraduate bursaries and scholarships. The Postgraduate Centre may be contacted at gradcentre@uct.ac.za. or visited at www.pgfo.uct.ac.za.

Distinguished Teachers
The University has instituted a Distinguished Teacher’s Award in recognition of the importance of excellence in teaching at all levels in the University. The following current members of the Faculty staff have received this award.

Mr F Carter (School of Architecture, Planning and Geomatics) 2007
Professor JM Case (Chemical Engineering) 2007

Fellows in the Faculty
The Council of the University has established Fellowships for members of the permanent academic staff in recognition of original distinguished academic work of such quality as to merit special recognition. The following is a list of Fellows who are currently on the Faculty’s staff:

Emeritus Professor MG Alexander (Civil Engineering)
Emeritus Professor D Dewar (Architecture, Planning and Geomatics)
Professor GA Ekama (Civil Engineering)
Professor STL Harrison (Chemical Engineering)
Professor AE Lewis (Chemical Engineering)
Professor G Nurick (Mechanical Engineering)
Emeritus Professor CT O’Connor (Chemical Engineering)
Emeritus Professor H Rüther (Architecture, Planning and Geomatics)
Professor E van Steen (Chemical Engineering)
Professor V Watson (Architecture, Planning and Geomatics)
Professor A Zingoni (Civil Engineering)

Minimum Requirements for Admission
Refer to rule FB 1, in the section on Degree Rules, for the minimum formal entrance requirements for the bachelor’s degrees offered in the Faculty of Engineering & the Built Environment. The minimum requirements for admission for Postgraduate Diploma, Honours and Master’s degree programmes in the Faculty of Engineering & the Built Environment are set out in the rules for the appropriate postgraduate diplomas/degrees. The PhD requirements are set out in Handbook 3 of this series.

Degrees and Diplomas Offered in the Faculty

<table>
<thead>
<tr>
<th>Degrees</th>
<th>SAQA ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor of Architectural Studies</td>
<td>3933</td>
</tr>
<tr>
<td>Bachelor of Architectural Studies (Honours)</td>
<td>66569</td>
</tr>
<tr>
<td>Bachelor of City Planning (Honours)</td>
<td>94845</td>
</tr>
<tr>
<td>Bachelor of Science in Construction Studies</td>
<td>11703</td>
</tr>
<tr>
<td>Bachelor of Science in Engineering in Chemical Engineering</td>
<td>13983</td>
</tr>
</tbody>
</table>
Bachelor of Science in Engineering in Civil Engineering 13974
Bachelor of Science in Engineering in Electrical Engineering 13979
Bachelor of Science in Engineering in Electrical & Computer Engineering 66518
Bachelor of Science in Engineering in Mechatronics 13980
Bachelor of Science in Engineering in Electro-Mechanical Engineering 13982
Bachelor of Science in Engineering in Mechanical Engineering 13977
Bachelor of Science in Geomatics TBC
Bachelor of Science in Property Studies 11693
Bachelor of Science (Honours) in Geographical Information Systems TBC
Bachelor of Science (Honours) in Construction Management 11703
Bachelor of Science (Honours) in Materials Science 21339
Bachelor of Science (Honours) in Property Studies 11699
Bachelor of Science (Honours) in Quantity Surveying 14435
Bachelor of Science (Honours) specialising in Nuclear Power TBC
Master of Architecture 3977
Master of Architecture (Professional)* 98987
Master of Urban Design 94631
Master of City and Regional Planning 67426
Master of Geotechnical Engineering 97913
Master of Landscape Architecture* TBC
Master of Science in Engineering 10681
Master of Science in Project Management 13854
Master of Philosophy TBC
Master of Science in Property Studies 11697
Master of Transport Studies 97727
Doctor of Philosophy TBC
Doctor of Architecture 19272
Doctor of Science in Engineering 10687

* Not HEQS-F aligned.

Where TBC is indicated, SAQA registration numbers are still awaited.

Term Dates for 2017

1st Semester

1st Quarter 13 March to 28 April
Mid-term break 29 April to 07 May
2nd Quarter 08 May to 14 July
Mid-year Vacation 15 July to 13 August

2nd Semester

3rd Quarter 14 August to 22 September
Mid-term Break 23 September to 01 October
4th Quarter 02 October to 22 December

Lecture periods

| 1 | 08:00 to 08:45 | 2 | 09:00 to 09:45 | 3 | 10:00 to 10:45 | 4 | 11:00 to 11:45 | 5 | 12:00 to 12:45 |
|---|---|---|---|---|---|---|---|---|
| | 08:00 to 08:45 | 09:00 to 09:45 | 10:00 to 10:45 | 11:00 to 11:45 | 12:00 to 12:45 | The meridian | | |
| 6 | 13:00 to 14:00 | 14:00 to 14:45 | 15:00 to 15:45 | 16:00 to 16:45 | 17:00 to 17:45 | | | |
Lecture timetable
The lecture timetables are published separately by the department concerned from where they are obtainable at Registration.

Key to Course Abbreviations, Codes and Terminology Guide to the Credit System

Course Codes

ACC Accounting
APG Architecture, Planning and Geomatics
AST Astronomy
AXL African & Gender Studies, Anthropology & Linguistics
BIO Biological Sciences
BUS Management Studies
CEM Chemistry
CHE Chemical Engineering
CIV Civil Engineering
CML Commercial Law
CON Construction Economics and Management
CSC Computer Science
ECO Economics
EEE Electrical Engineering
EGS Environmental & Geographical Sciences
END Faculty of Engineering & the Built Environment
GEO Geological Sciences
HST Historical Studies
HUB Human Biology
INF Information Systems
MAM Mathematics & Applied Mathematics
MEC Mechanical Engineering
POL Political Studies
PBL Public Law
PHI Philosophy
PHY Physics
SOC Sociology
STA Statistical Sciences

Course Codes – Explanatory Notes

Every course described in this Handbook has a course name and a corresponding course code. The course structure is uniform, and it gives important information about the course. The course code is an eight character code in the format AAAnnnnB, where

AAA represents the department offering the course;
nnn is a number, where the first digit represents the year level of the course (no change) and the second, third and fourth digits represent a number between 000 and 999 which uniquely identifies the course at that level offered by that department (previously this was a number between 00 and 99);

B (the course suffix) represents the position in the year in which the course is offered (as before).

The following suffixes are used:
A 1st quarter course
B 2nd quarter course
C 3rd quarter course
D 4th quarter course
GENERAL INFORMATION

F 1st semester course
S 2nd semester course
H half course taught over whole year
W full course, year-long
L Winter Term
M Multiterm
U Summer Term Sessions 1 and 2
J Summer Term Session 1
P Summer Term Session 2
X not classified
Z other

EWA Examination without attendance at course

The following example shows how this works:

CIV2031S Structural Engineering

The code shows that this is a Civil Engineering course (CIV), of second year level (2031) and that it is a second semester (S) course.

The first numeral in the course code (see description of the credit code system above) enables one to distinguish between this Faculty's undergraduate and postgraduate courses as follows:

• levels 1 to 3 are all undergraduate courses;
• level 4 may be either undergraduate or postgraduate courses depending on the code prefix: level 4 CHE, CIV, EEE and MEC courses are undergraduate and so also are level 4 APG Geomatics courses; level 4 APG (other than Geomatics), and CON courses are postgraduate; level 5 and above are all postgraduate.

The courses listed in the following pages are in alpha-numeric order, based on the course code prefix and number. Thus, all the courses offered by a particular department are grouped together.

Courses: Guide To Terminology

Core courses: These courses form a central part of a Bachelor's degree programme. Inclusion of such courses in a curriculum is compulsory.

Co-requisites: A co-requisite course is one for which a student must be registered together with (i.e. concurrently) another specified course.

Elective core courses: This category comprises groups of courses from which the selection of one course or more is mandatory for a Bachelor's degree curriculum. Selection of these courses is made on the basis of specialisation (stream) or on the basis of interest.

Elective courses: Courses required for degree purposes (e.g. to make up required number of programme credits), but in which the choice of courses is left to the student, except that a broad field of study may be specified (e.g. Humanities courses), and subject to timetable constraints.

Major Course: A major course refers to the Design & Theory Studio and Technology courses in the BAS curriculum.

Optional courses: Any approved courses other than the core courses and those selected as elective core or electives in the curriculum of the student concerned. Selection of these courses is made on the basis of interest, subject to prerequisite requirements, timetable constraints and the permission of the heads of departments concerned. Such courses will be included in the student's credit total and in the computation of the credit weighted average.

Prerequisites: A prerequisite course is one which a student must have completed in order to gain admission to a specific other course.

Undergraduate course: This is a course which is required for a first qualification, e.g. a Bachelor's degree.
Postgraduate course: This is a course which is required for a higher qualification, e.g. a Postgraduate Diploma, Honours or a Master’s degree.

DP requirements: The classwork and test results which must be achieved in order to be allowed to write the examination in a course (DP = duly performed).

NQF credits: The weighting a course is given in the national qualifications framework system. Students should ignore NQF credit values, and complete their degrees by faculty rules for number of courses.

Credit System
The Faculty has adopted the Higher Education Qualifications Framework (HEQSF) course credit system with effect from 2004. The Faculty's course credit ratings which were in effect prior to 2004 have been converted to HEQSF course credits. This conversion involves multiplying the pre-2004 credit values by four. The HEQSF system is based on the guideline that 10 notional hours of learning is equal to one credit. The Faculty's previous credit system was based on the guideline that 40 notional hours of learning is equal to one credit.

Ethics Clearance
Research that involves human participants or animal use for research or teaching must undergo ethics review, according to faculty-specific guidelines. Review generally entails prior approval of a research proposal by a Research Ethics or Animal Ethics Committee. In cases where prior approval is not appropriate, the research proposal should be subjected to appropriate deliberative procedures, according to faculty-specific guidelines. Research papers or dissertations that involve human participants or animal use may not be submitted for examination if they have not undergone any ethics review process.
Bachelor of Architectural Studies (Honours)

An honours degree in architecture that provides advanced vocational and discipline-specific knowledge, skills and competencies related to the history, theory, technology and practice of architecture. The course of study extends the base of knowledge through graduate study with particular emphasis on architectural design. It is focused on developing creative and critical inquiry, reflective understanding and cultural, social and technical knowledge in preparation for self-motivated independent learning. The qualification introduces an honours degree within a succession of qualifications leading towards professional qualification in architecture. It is a prerequisite qualification for admission into the Master of Architecture (Professional).

Minimum Admission Requirements

FHA1.1 A person may be considered as a candidate for the degree if he or she is proficient in English and

(a) is a graduate of the Bachelor of Architectural Studies degree of this University; or
(b) is the holder of any three-year bachelor's degree recognised by the Senate as equivalent to the Bachelor of Architectural Studies degree of this University; or
(c) has completed three years of study at this or another university or institution which is, in the opinion of the Senate, the equivalent of the Bachelor of Architectural Studies degree of this University.

FHA1.2 A person may apply for entry into the degree if he or she:

(a) has, after completion of the Bachelor of Architectural Studies degree or equivalent, gained a minimum of six months uninterrupted practical experience in the office of the same registered architect.
(b) exceptions to (a) only with approval by Senate.

Automatic Entry

FHA1.3 In recognizing the BAS Programme presented at UCT as the main feeder degree for the Bachelor of Architectural Studies (Honours) Programme, all students who obtain a credit weighted average of 70% or higher, of all the following subjects combined, will be afforded automatic entry into the Bachelor of Architectural Studies (Honours) programme: APG3023W (Technology III), APG3037W (Design and Theory Studio III), APG3000F (History and Theory of Architecture V), APG3001S (History and Theory of Architecture VI).

Selection

FHA2 Admission into the BAS(Hons) is limited and by application. Applicants must submit an application to the University on the prescribed UCT form, by the date
stipulated by the University. In addition applicants must prepare a submission for the School of Architecture, the requirements of which are available from the School of Architecture. Selection is based on an applicant's design ability, academic record, and work experience. Selection is at the discretion of the Admissions Committee.

Duration of Degree
FHA3.1 The minimum duration of the Bachelor of Architectural Studies (Honours) is one year of full-time study.

FHA3.2 Except with the permission of Senate, students who register for the Bachelor of Architectural Studies (Honours) degree, must register for the full year’s study.

Readmission Requirements
FHA4 Except with permission of Senate, a student may not renew his or her registration if he or she fails to pass:
(a) courses to the value of 50% of the credits registered for; and
(b) a course after having been registered for it twice.

Obtaining the Degree and Validity of Credits
FHA5.1 The curriculum comprises two semesters, each consisting of a studio course and three non-studio courses of which one is an elective course in the first semester. A candidate shall comply with the curriculum requirements prescribed by Senate, which are published in the Programmes of Study and Courses Offered section of this Handbook.

FHA5.2 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities shall not be carried forward for credit except by special permission of Senate.

FHA5.3 Registration: Students are required to register for all courses (including second semester elective course) in February.

Method of Assessment
FHA6.1 Satisfactory performance of the duly performed certificate (DP) requirements applies to all courses. A student gains entry to final assessment by satisfactory performance of the duly performed (DP) requirements. A student may be refused permission (DPR) to sit for the examination or review if he she fails to satisfy the Senate that he or she has satisfactorily attended and duly performed the required work set in the conditions for the award of a DP certificate.

FHA6.2 A DP certificate may be withheld unless: all parts of each studio work project, tutorial or other assignment are completed to an acceptable standard submitted for assessment at the stipulated times; there is satisfactory attendance (minimum of 80%), and a generally satisfactory participation in sections of the course.

FHA6.3 Assessment by formal examination may be by means of a written examination, term paper or presentation. An external examiner is appointed for each course assessed by examination.
Degree Awarded in the First Class
FHA7 The degree will be awarded in the first class to a candidate who has obtained first class passes in both Studio work I and II and an additional first class pass in either History and Theory of Architecture or Advanced Building Technology and has successfully completed all other courses required for the degree.

Bachelor of Science (Honours) in Construction Management
(NOTE: The rules must be read together with the general rules for degrees and diplomas in Handbook 3 of this series.)

The Bachelor of Science (Honours) in Construction Management degree is offered by the Faculty through the Department of Construction Economics and Management.

Minimum Admission Requirements
FHC1 A person shall not be admitted as a candidate for the degree unless he or she is proficient in English

(a) is a graduate of the BSc in Construction Studies degree of this University; or
(b) is the holder of any three-year bachelor’s degree of this, or any other university recognised for the purpose by the Senate as equivalent to the BSc in Construction Studies degree of this University; or
(c) has in any other manner attained a level of competence which in the opinion of the Senate is adequate for the purpose of admission.

Selection
FHC2 Selection is based on an applicant's academic record and experience. Completion of the Bachelor’s Degree in Construction Studies or equivalent with a Grade Point Average (GPA) of at least 65% is the normal academic prerequisite for admission. Applicants may be required to attend an interview and/or write an entrance examination.

For the purposes of FHC2, GPA is defined as the credit weighted average. This is calculated by multiplying each course’s percentage by its credit weighting, totaling these products, and then dividing this total by the sum of the credits used in the calculation.

The GPA of a candidate holding a BSc Construction Studies degree from this university will be determined by taking into account all core, elective core and elective courses completed while registered for that degree, whether required for the degree or not.

Duration
FHC3 A candidate must be registered for a minimum of one academic year.

Registration Requirements
FHC4.1 Subject to the provisions of the Rule on Readmission, below, a candidate must register annually unless granted leave of absence by Senate.

FHC4.2 A candidate must register or reregister by not later than the end of registration week, or, if any of the courses begin earlier, by not later than the date on which the first course starts.

FHC4.3 A candidate must register or reregister by not later than 28 February if taking only
second semester courses.

Curriculum

FHC5.1 A candidate:

(i) must comply with the curriculum and course requirements prescribed by Senate which are published in the Programmes of Study and Courses Offered sections of this Handbook; and

(ii) must complete approved coursework of a value not less than 144 credits.

FHC5.2 A candidate's curriculum in each year shall be subject to the approval of the Dean and the Head of the Department administering the Degree Programme for which the candidate is registered.

FHC5.3 When registering for courses a candidate shall be required to adhere to the prescribed lecture timetable slots, as documented in the departmental Lecture Timetable. A candidate shall inform the Head of the Department in writing of any clash of courses (lectures/tutorials/practicals etc.) arising from adherence to this rule. Except with the permission of the Head of Department, a candidate may not be permitted to register for a course which clashes with another in the lecture timetable. In the event of such a clash precedence shall be given, for registration purposes, to courses which are being repeated or undertaken in arrears.

FHC5.4 Except by permission of Senate a candidate may not withdraw from a course which he or she is repeating.

Recognition of Courses

FHC6 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities, shall not be carried forward for credit except by special permission of Senate.

Method of Assessment

General

FHC7.1 Courses are assessed by formal examination, by review or by satisfactory performance of the duly performed certificate (DP) requirements. If a course is assessed by formal examination or review, a student may be refused permission (DPR) to present himself/herself for the examination or review if he/she fails to satisfy the Senate that he/she has satisfactorily attended and duly performed the work of the class by the date set in the conditions for the award of a DP certificate.

Formal Examination

FHC7.2 Assessment by formal examination may be by means of written and/or oral examination, tutorials, class tests, term papers, notebooks or other course assignments. An external examiner is appointed for each course assessed by examination.

Duly Performed (DP) Certificate

FHC7.3 A DP certificate may be withheld unless (i) all parts of each project, tutorial and other assignments are completed to an acceptable standard and submitted for assessment at stipulated times; (ii) there is satisfactory attendance (as prescribed by Senate) and satisfactory participation in all sections of the course.

Duly Performed (DP) Courses

FHC7.4 In courses where the DP certificate constitutes the final result, the candidate is required to satisfy the assessor that he or she has satisfactorily attended and duly
performed the work of the class by the date set in the conditions for the award of a
DP certificate. The result is published as an ungraded 'pass' (PA) or 'duly performed
certificate refused' (DPR).

Review

FHC7.5 Assessment by review consists of a review by the internal examiner(s) of the course
work completed by means of written and/or oral class tests, tutorials, term papers,
notebooks or other course assignments.

Supplementary Examinations

FHC8 Senate may permit a candidate to take a supplementary examination in a course
offered by a department other than a department established in the Faculty of
Engineering & the Built Environment, subject to supplementary examinations being
offered by the department concerned. However, a supplementary examination will
not be offered for any course offered by a department established in the Faculty of
Engineering & the Built Environment.

Readmission Requirements

FHC9 Except by permission of the Senate a candidate may not renew his or her
registration

(i) if he or she, in the courses recognised for the degree fails to pass courses of
a value of not less than 50% of the total credits for which he or she is
registered in the year concerned;

(ii) if he or she, in courses recognised for the degree fails to complete a course
after having been registered for it twice.

Award of the Degree in the First Class

FHC10 In order to be considered for the award of the degree in the first class, a candidate
must obtain a minimum average mark of 75%.

Exemption from or Modification of Rules

FHC11 Any exemption or deviation from the rules requires the approval of Senate.

Bachelor of Science (Honours) in Geographical Information Systems

(NOTE: The rules must be read together with the general rules for degrees and diplomas in
Handbook 3 of this series.)

The Bachelor of Science (Honours) in Geographical Information Systems degree is offered by the
Faculty through the School of Architecture, Planning and Geomatics.

Minimum Admission Requirements

FHG1 A person shall not be admitted as a candidate for the degree unless he or she is
proficient in English and

(a) is a graduate of the BSc degree of this University; or

(b) is the holder of any three-year bachelor’s degree of this, or any other
university recognised for the purpose by the Senate as equivalent to the BSc
degree of this University; or

(c) has an approved first year (two semesters) university course in Mathematics
OR an approved first year (one semester) university course in Mathematics
and a first year (one semester) university course in Statistics; or

(d) has in any other manner attained a level of competence which in the opinion
of the Senate is adequate for the purpose of admission.
Selection
FHG2 Selection is based on an applicant's academic record and experience. Applicants may be required to attend an interview and/or write an entrance examination.

Duration
FHG3 A candidate must be registered for a minimum of one academic year.

Registration Requirements
FHG4.1 Subject to the provisions of the Rule on Readmission, below, a candidate must register annually unless granted leave of absence by Senate.

FHG4.2 A candidate must register or reregister by not later than the end of registration week, or, if any of the courses begins earlier, by not later than the date on which the first course starts.

Curriculum
FHG5.1 A candidate:
(i) must comply with the curriculum and course requirements prescribed by Senate which are published in the Programmes of Study and Courses Offered sections of this Handbook; and
(ii) must complete approved coursework of a value not less than 144 credits.

FHG5.2 A candidate's curriculum in each year shall be subject to the approval of the Dean and the Head of the Department administering the Degree Programme for which the candidate is registered.

FHG5.3 When registering for courses a candidate shall be required to adhere to the prescribed lecture timetable slots, as documented in the departmental Lecture Timetable. A candidate shall inform the Head of the Department in writing of any clash of courses (lectures/tutorials/practicals etc.) arising from adherence to this rule. Except with the permission of the Head of Department, a candidate may not be permitted to register for a course which clashes with another in the lecture timetable. In the event of such a clash precedence shall be given, for registration purposes, to courses which are being repeated or undertaken in arrears.

FHG5.4 Except by permission of Senate a candidate may not withdraw from a course which he or she is repeating.

Method of Assessment
General
FHG6.1 Courses are assessed by formal examination, by review or by satisfactory performance of the duly performed certificate (DP) requirements. If a course is assessed by formal examination or review, a student may be refused permission (DPR) to present himself/herself for the examination or review if he/she fails to satisfy the Senate that he/she has satisfactorily attended and duly performed the work of the class by the date set in the conditions for the award of a DP certificate.

Formal Examination
FHG6.2 Assessment by formal examination may be by means of written and/or oral examination, tutorials, class tests, term papers, notebooks or other course assignments. An external examiner is appointed for each course assessed by examination.

Duly Performed (DP) Certificate
A DP certificate may be withheld unless (i) all parts of each project, tutorial and other assignments are completed to an acceptable standard and submitted for assessment at stipulated times; (ii) there is satisfactory attendance (as prescribed by Senate) and satisfactory participation in all sections of the course.

Readmission Requirements

Except by permission of the Senate a candidate may not renew his or her registration (i) if he or she, in the courses recognised for the degree fails to pass courses of a value of not less than 50% of the total credits for which he or she is registered in the year concerned; (ii) if he or she, in courses recognised for the degree fails to complete a course after having been registered for it twice.

Award of the Degree in the First Class

In order to be considered for the award of the degree in the first class, a candidate must complete the degree in one year and obtain at least 75% for the thesis project APG4050W and an average of at least 75% for all coursework.

Exemption from or Modification of Rules

Any exemption or deviation from the rules requires the approval of Senate.

Bachelor of Science (Honours) in Materials Science

(NOTE: The rules must be read together with the general rules for degrees and diplomas in Handbook 3 of this series.)

The Bachelor of Science (Honours) in Materials Science degree is offered by the Faculty through the Department of Mechanical Engineering.

Minimum Admission Requirements

A person shall not be admitted as a candidate for the degree unless he or she is proficient in English and

(a) is a graduate of the BSc degree of this University; or
(b) is the holder of any three-year bachelor’s degree of this, or any other university recognised for the purpose by the Senate as equivalent to the BSc degree of this University; or
(c) has in any other manner attained a level of competence which in the opinion of the Senate is adequate for the purpose of admission.

Selection

Selection is based on an applicant's academic record and experience. Completion of the Bachelor’s degree with a weighted average of at least 60% (supplementary results excluded) is the normal academic prerequisite for admission. Applicants may be required to attend an interview and/or write an entrance examination.

Duration

A candidate must be registered for a minimum of one academic year.

Registration Requirements

Subject to the provisions of the Rule on Readmission, below, a candidate must register annually unless granted leave of absence by Senate.
A candidate must register or reregister by not later than the end of registration week, or, if any of the courses begins earlier, by not later than the date on which the first course starts.

Curriculum

(i) A candidate:

- must comply with the curriculum and course requirements prescribed by Senate which are published in the Programmes of Study and Courses Offered sections of this Handbook; and
- must complete approved coursework of a value not less than 144 credits.

A candidate's curriculum in each year shall be subject to the approval of the Dean and the Head of the Department administering the Degree Programme for which the candidate is registered.

When registering for courses a candidate shall be required to adhere to the prescribed lecture timetable slots, as documented in the departmental Lecture Timetable. A candidate shall inform the Head of the Department in writing of any clash of courses (lectures/tutorials/practicals etc.) arising from adherence to this Rule immediately it becomes apparent that such a clash exists. Except with the permission of the Head of Department, a candidate may not be permitted to register for a course which clashes with another in the lecture timetable. In the event of such a clash precedence shall be given, for registration purposes, to courses which are being repeated or undertaken in arrears.

Except by permission of Senate a candidate may not withdraw from a course which he or she is repeating.

Method of Assessment

General

Courses are assessed by formal examination, by review or by satisfactory performance of the duly performed certificate (DP) requirements. If a course is assessed by formal examination or review, a student may be refused permission (DPR) to present himself/herself for the examination or review if he/she fails to satisfy the Senate that he/she has satisfactorily attended and duly performed the work of the class by the date set in the conditions for the award of a DP certificate.

Formal Examination

Assessment by formal examination may be by means of written and/or oral examination, tutorials, class tests, term papers, notebooks or other course assignments. An external examiner is appointed for each course assessed by examination.

Duly Performed (DP) Certificate

A DP certificate may be withheld unless (i) all parts of each project, tutorial and other assignments are completed to an acceptable standard and submitted for assessment at stipulated times; (ii) there is satisfactory attendance (as prescribed by Senate) and satisfactory participation in all sections of the course.

Readmission Requirements

Except by permission of the Senate a candidate may not renew his or her registration

- if he or she, in the courses recognised for the degree fails to pass courses of
a value of not less than 50% of the total credits for which he or she is
registered in the year concerned;
(ii) if he or she, in courses recognised for the degree fails to complete a course
after having been registered for it twice.

Award of the Degree in the First Class
FHM8 In order to be considered for the award of the degree in the first class, a candidate
must complete the degree in one year and obtain at least 75% for the Honours
Research Project MEC4091S and an average of at least 75% for all coursework.

Exemption from or Modification of Rules
FHM9 Any exemption or deviation from the rules requires the approval of Senate.

Bachelor of Science (Honours) in Nuclear Power
(Note: The rules must be read together with the general rules for degrees and diplomas in
Handbook 3 of this series.)

The Bachelor of Science (Honours) specialising in Nuclear Power degree is offered by the Faculty
through the Department of Electrical Engineering.

Minimum Admission Requirements
FHN1 A person shall not be admitted as a candidate for the degree unless he or she is
proficient in English and
(a) is a graduate of the BSc degree of this University; or
(b) is the holder of any three-year bachelor’s degree of this, or any other
university recognised for the purpose by the Senate as equivalent to the BSc
degree of this University; or
(c) has in any other manner attained a level of competence which in the opinion
of the Senate is adequate for the purpose of admission.

Selection
FHN2 Selection is based on an applicant's academic record and experience. Completion of
the Bachelor’s degree with a weighted average of at least 60% (supplementary
results excluded) is the normal academic prerequisite for admission. Applicants
may be required to attend an interview and/or write an entrance examination.

Duration
FHN3 A candidate must be registered for a minimum of one academic year.

Registration Requirements
FHN4.1 Subject to the provisions of the Rule on Readmission, below, a candidate must
register annually unless granted leave of absence by Senate.

FHN4.2 A candidate must register or reregister by not later than the end of registration
week, or, if any of the courses begins earlier, by not later than the date on which the
first course starts.

Curriculum
FHN5.1 A candidate:
(i) must comply with the curriculum and course requirements prescribed by
Senate which are published in the Programmes of Study and Courses
Offered sections of this Handbook; and
(ii) must complete approved coursework of a value not less than 148 credits.

FHN5.2 A candidate's curriculum in each year shall be subject to the approval of the Dean and the Head of the Department administering the Degree Programme for which the candidate is registered.

FHN5.3 When registering for courses a candidate shall be required to adhere to the prescribed lecture timetable slots, as documented in the departmental Lecture Timetable. A candidate shall inform the Head of the Department in writing of any clash of courses (lectures/tutorials/practicals etc.) arising from adherence to this Rule immediately it becomes apparent that such a clash exists. Except with the permission of the Head of Department, a candidate may not be permitted to register for a course which clashes with another in the lecture timetable. In the event of such a clash precedence shall be given, for registration purposes, to courses which are being repeated or undertaken in arrears.

FHN5.4 Except by permission of Senate a candidate may not withdraw from a course which he or she is repeating.

Method of Assessment

General

FHN6.1 Courses are assessed by formal examination, by review or by satisfactory performance of the duly performed certificate (DP) requirements. If a course is assessed by formal examination or review, a student may be refused permission (DPR) to present himself/herself for the examination or review if he/she fails to satisfy the Senate that he/she has satisfactorily attended and duly performed the work of the class by the date set in the conditions for the award of a DP certificate.

Formal Examination

FHN6.2 Assessment by formal examination may be by means of written and/or oral examination, tutorials, class tests, term papers, notebooks or other course assignments. An external examiner is appointed for each course assessed by examination.

Duly Performed (DP) Certificate

FHN6.3 A DP certificate may be withheld unless (i) all parts of each project, tutorial and other assignments are completed to an acceptable standard and submitted for assessment at stipulated times; (ii) there is satisfactory attendance (as prescribed by Senate) and satisfactory participation in all sections of the course.

Readmission Requirements

FHN7 Except by permission of the Senate a candidate may not renew his or her registration

(i) if he or she, in the courses recognised for the degree fails to pass courses of a value of not less than 50% of the total credits for which he or she is registered in the year concerned;

(ii) if he or she, in courses recognised for the degree fails to complete a course after having been registered for it twice.

Award of the Degree in the First Class

FHN8 In order to be considered for the award of the degree in the first class, a candidate must complete the degree in one year and obtain at least 75% for the Research Project and an average of at least 75% for all coursework.
Exemption from or Modification of Rules
FHN9 Any exemption or deviation from the rules requires the approval of Senate.

Bachelor of Science (Honours) in Property Studies
(NOTE: The rules must be read together with the general rules for degrees and diplomas in Handbook 3 of this series.)

The Bachelor of Science (Honours) in Property Studies degree is offered by the Faculty through the Department of Construction Economics and Management.

Minimum Admission Requirements
FHP1 A person shall not be admitted as a candidate for the degree unless he or she is proficient in English and

(a) is a graduate of the BSc in Property Studies degree of this University; or
(b) is the holder of any three-year bachelor’s degree of this, or any other university recognised for the purpose by the Senate as equivalent to the BSc in Property Studies degree of this University; or
(c) has in any other manner attained a level of competence which in the opinion of the Senate is adequate for the purpose of admission.

Selection
FHP2 Selection is based on an applicant's academic record and experience. Completion of the Bachelor’s Degree in Property Studies or equivalent with a Grade Point Average (GPA) of at least 65% is the normal academic prerequisite for admission. Applicants may be required to attend an interview and/or write an entrance examination.

For the purposes of FHP2, GPA is defined as the credit weighted average. This is calculated by multiplying each course’s percentage by its credit weighting, totaling these products, and then dividing this total by the sum of the credits used in the calculation.

The GPA of a candidate holding a BSc Property Studies degree from this university will be determined by taking into account all core, elective core and elective courses completed while registered for that degree, whether required for the degree or not.

Duration
FHP3 A candidate must be registered for a minimum of one academic year.

Registration Requirements
FHP4.1 Subject to the provisions of the Rule on Readmission, below, a candidate must register annually unless granted leave of absence by Senate.

FHP4.2 A candidate must register or reregister by not later than the end of registration week, or, if any of the courses begin earlier, by not later than the date on which the first course starts.

Curriculum
FHP5.1 A candidate:

(i) must comply with the curriculum and course requirements prescribed by Senate which are published in the Programmes of Study and Courses Offered sections of this Handbook.
(ii) must complete approved coursework of a value not less than 144 credits.

FHP5.2 A candidate's curriculum in each year shall be subject to the approval of the Dean and the Head of the Department administering the Degree Programme for which the candidate is registered.

FHP5.3 When registering for courses a candidate shall be required to adhere to the prescribed lecture timetable slots, as documented in the departmental Lecture Timetable. A candidate shall inform the Head of the Department in writing of any clash of courses (lectures/tutorials/practicals, etc.) arising from adherence to this Rule immediately it becomes apparent that such a clash exists. Except with the permission of the Head of Department, a candidate may not be permitted to register for a course which clashes with another in the lecture timetable. In the event of such a clash precedence shall be given, for registration purposes, to courses which are being repeated or undertaken in arrears.

FHP5.4 Except by permission of Senate a candidate may not withdraw from a course which he or she is repeating.

Recognition of Courses
FHP6 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities, shall not be carried forward for credit except by special permission of Senate.

Method of Assessment
General
FHP7.1 Courses are assessed by formal examination, by review or by satisfactory performance of the duly performed certificate (DP) requirements. If a course is assessed by formal examination or review, a student may be refused permission (DPR) to present himself/herself for the examination or review if he/she fails to satisfy the Senate that he/she has satisfactorily attended and duly performed the work of the class by the date set in the conditions for the award of a DP certificate.

Formal Examination
FHP7.2 Assessment by formal examination may be by means of written and/or oral examination, tutorials, class tests, term papers, notebooks or other course assignments. An external examiner is appointed for each course assessed by examination.

Duly Performed (DP) Certificate
FHP7.3 A DP certificate may be withheld unless (i) all parts of each project, tutorial and other assignments are completed to an acceptable standard and submitted for assessment at stipulated times; (ii) there is satisfactory attendance (as prescribed by Senate) and satisfactory participation in all sections of the course.

Duly Performed (DP) Courses
FHP7.4 In courses where the DP certificate constitutes the final result, the candidate is required to satisfy the assessor that he or she has satisfactorily attended and duly performed the work of the class by the date set in the conditions for the award of a DP certificate. The result is published as an ungraded 'pass' (PA) or 'duly performed certificate refused' (DPR).
Review
FHP7.5 Assessment by review consists of a review by the internal examiner(s) of the course work completed by means of written and/or oral class tests, tutorials, term papers, notebooks or other course assignments.

Supplementary Examinations
FHP8 Senate may permit a candidate to take a supplementary examination in a course offered by a department other than a department established in the Faculty of Engineering & the Built Environment, subject to supplementary examinations being offered by the department concerned. However, a supplementary examination will not be offered for any course offered by a department established in the Faculty of Engineering & the Built Environment.

Readmission Requirements
FHP9 Except by permission of the Senate a candidate may not renew his or her registration

(i) if he or she, in the courses recognised for the degree fails to pass courses of a value of not less than 50% of the total credits for which he or she is registered in the year concerned;

(ii) if he or she, in courses recognised for the degree fails to complete a course after having been registered for it twice.

Award of the Degree in the First Class
FHP10 In order to be considered for the award of the degree in the first class, a candidate must obtain a minimum average mark of 75%.

Exemption from or Modification of Rules
FHP11 Any exemption or deviation from the rules requires the approval of Senate.

Bachelor of Science (Honours) in Quantity Surveying

(NOTE: The rules must be read together with the general rules for degrees and diplomas in Handbook 3 of this series.)

The Bachelor of Science (Honours) in Quantity Surveying degree is offered by the Faculty through the Department of Construction Economics and Management.

Minimum Admission Requirements
FHP1 A person shall not be admitted as a candidate for the degree unless he or she is proficient in English and

(a) is a graduate of the BSc in Construction Studies degree of this University; or

(b) is the holder of any three-year bachelor’s degree of this, or any other university recognised for the purpose by the Senate as equivalent to the BSc in Construction Studies degree of this University; or

(c) has in any other manner attained a level of competence which in the opinion of the Senate is adequate for the purpose of admission.

Selection
FHP2 Selection is based on an applicant's academic record and experience. Completion of the Bachelor’s Degree in Construction Studies or equivalent with a Grade Point Average (GPA) of at least 65% is the normal academic prerequisite for admission. Applicants may be required to attend an interview and/or write an entrance examination.
For the purposes of FHQ2, GPA is defined as the credit weighted average. This is calculated by multiplying each course’s percentage by its credit weighting, totaling these products, and then dividing this total by the sum of the credits used in the calculation.

The GPA of a candidate holding a BSc Construction Studies degree from this university will be determined by taking into account all core, elective core and elective courses completed while registered for that degree, whether required for the degree or not.

Duration

FHQ3
A candidate must be registered for a minimum of one academic year.

Registration Requirements

FHQ4.1 Subject to the provisions of the Rule on Readmission, below, a candidate must register annually unless granted leave of absence by Senate.

FHQ4.2 A candidate must register or reregister by not later than the end of Registration Week, or, if any of the courses begins earlier, by not later than the date on which the first course starts.

FHQ4.3 A candidate must register or reregister by not later than end of registration week if taking only second semester courses.

Curriculum

FHQ5.1 A candidate:

(i) must comply with the curriculum and course requirements prescribed by Senate which are published in the Programmes of Study and Courses Offered sections of this Handbook.

(ii) must complete approved coursework of a value not less than 164 credits.

FHQ5.2 A candidate's curriculum in each year shall be subject to the approval of the Dean and the Head of the Department administering the Degree Programme for which the candidate is registered.

FHQ5.3 When registering for courses a candidate shall be required to adhere to the prescribed lecture timetable slots, as documented in the departmental Lecture Timetable. A candidate shall inform the Head of the Department in writing of any clash of courses (lectures/tutorials/practicals etc.) arising from adherence to this Rule immediately it becomes apparent that such a clash exists. Except with the permission of the Head of Department, a candidate may not be permitted to register for a course which clashes with another in the lecture timetable. In the event of such a clash precedence shall be given, for registration purposes, to courses which are being repeated or undertaken in arrears.

FHQ5.4 Except by permission of Senate a candidate may not withdraw from a course which he or she is repeating

Recognition of Courses

FHQ6 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities, shall not be carried forward for credit except by special permission of Senate.
Method of Assessment

General
FHQ7.1 Courses are assessed by formal examination, by review or by satisfactory performance of the duly performed certificate (DP) requirements. If a course is assessed by formal examination or review, a student may be refused permission (DPR) to present himself/herself for the examination or review if he/she fails to satisfy the Senate that he/she has satisfactorily attended and duly performed the work of the class by the date set in the conditions for the award of a DP certificate.

Formal Examination
FHQ7.2 Assessment by formal examination may be by means of written and/or oral examination, tutorials, class tests, term papers, notebooks or other course assignments. An external examiner is appointed for each course assessed by examination.

Duly Performed (DP) Certificate
FHQ7.3 A DP certificate may be withheld unless (i) all parts of each project, tutorial and other assignments are completed to an acceptable standard and submitted for assessment at stipulated times; (ii) there is satisfactory attendance (as prescribed by Senate) and satisfactory participation in all sections of the course.

Duly Performed (DP) Courses
FHQ7.4 In courses where the DP certificate constitutes the final result, the candidate is required to satisfy the assessor that he or she has satisfactorily attended and duly performed the work of the class by the date set in the conditions for the award of a DP certificate. The result is published as an ungraded 'pass' (PA) or 'duly performed certificate refused' (DPR).

Review
FHQ7.5 Assessment by review consists of a review by the internal examiner(s) of the course work completed by means of written and/or oral class tests, tutorials, term papers, notebooks or other course assignments.

Supplementary Examinations
FHQ8 Senate may permit a candidate to take a supplementary examination in a course offered by a department other than a department established in the Faculty of Engineering & the Built Environment, subject to supplementary examinations being offered by the department concerned. However, a supplementary examination will not be offered for any course offered by a department established in the Faculty of Engineering & the Built Environment.

Readmission Requirements
FHQ9 Except by permission of the Senate a candidate may not renew his or her registration
(i) if he or she, in the courses recognised for the degree fails to pass courses of a value of not less than 50% of the total credits for which he or she is registered in the year concerned;
(ii) if he or she, in courses recognised for the degree fails to complete a course after having been registered for it twice.

Award of the Degree in the First Class
FHQ10 In order to be considered for the award of the degree in the first class, a candidate must obtain a minimum average mark of 75%.
Exemption from or Modification of Rules
FHQ11 Any exemption or deviation from the rules requires the approval of Senate.

Bachelor of City Planning Honours
An Honours degree in City Planning which is a pre-requisite qualification for admission to the Master’s degree in City and Regional Planning. This degree does not provide access to professional qualification by accrediting bodies without the additional completion of the linked Master’s degree. The Honours degree will equip students with core values, knowledge, methodologies and techniques in the field of city planning. An introduction to research methodology prepares them for both the research components of the Honours degree and the linked Master’s Degree. It is focused on developing creative and critical inquiry, reflective understanding and cultural, social and technical knowledge in preparation for self-motivated independent learning.

Minimum Admission Requirements
FHB1 A person may be considered as a candidate for the degree if he or she is proficient in English and
(a) is a graduate of the University or of another University recognized by the Senate for the purpose; or
(b) has passed at any University or at any Institution recognized by the Senate for the purpose, such examinations as are, in the opinion of the Senate, equivalent to the examinations prescribed for a degree at the University; or
(c) has in any other manner attained a level of competence which, in the opinion of Senate, on the recommendation of the Faculty, is adequate for the purposes of admission as a candidate for the degree of Bachelors of City Planning Honours.

Selection
FHB2 Admission into the BCP(Hons) is limited and by application. Selection is based on an applicant's academic record which for graduates of three-year undergraduate programmes, would normally be expected to reflect marks in HEQSF Level 7 courses, which would qualify the applicant for entry into the appropriate Honours programme i.e. in the range 65% and above, together with his or her response to certain departmental requirements set by the Programme Convenor, which may vary from time to time. Entry into the programme is limited by the space available.

Duration of Degree
FHB3 The minimum duration of the Bachelor of City Planning (Honours) degree is one year of full-time study. The curriculum for the degree could extend over a maximum of two academic years of study.

FHB4 Subject to the provisions of the rule on Readmission, below, a candidate must register annually unless granted leave of absence by Senate. A candidate must register or re-register by not later than the end of Registration Week for all courses or, if any of the courses begin earlier, by not later than the date on which the first course starts.

Readmission Requirements
FHB5 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, fails to complete courses to the value of not less than 50% of the total credits for which he or she is registered in the year concerned. With respect to studio work, the completion of APG4022F is a prerequisite for registration in APG4026S.
Obtaining the Degree and Validity of Credits
FHB6.1 The curriculum comprises two semesters, each consisting of a studio course and five non-studio courses in the first semester and four non-studio courses in the second semester. A candidate shall comply with the curriculum requirements prescribed by Senate, which are published in the Programmes of Study and Courses Offered section of this Handbook.

FHB6.2 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities shall not be carried forward for credit except by special permission of Senate.

FHB7 Assessment by formal examination may be by means of a written examination, term paper or presentation. An external examiner is appointed for each course assessed by examination.

Degree Awarded in the First Class
FHB8 A candidate who obtains first class passes in at least five theory courses (constituted as APG4020F, APG4021F, APG4028F, APG4029F and APG4035F in the first semester and APG4023S, APG4024S, APG4025S, APG4038S in the second semester) and two first class passes in studio work projects (constituted as APG4022F and APG4026S) shall be awarded the degree with distinction.
Master's Degrees

<table>
<thead>
<tr>
<th>Qualification</th>
<th>Specialisation</th>
<th>Plan Code</th>
<th>ProgCode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Architecture</td>
<td>Architecture</td>
<td>APG01</td>
<td>EM006</td>
</tr>
<tr>
<td>Master of City & Regional Planning</td>
<td>City and Regional Planning</td>
<td>APG03</td>
<td>EM031</td>
</tr>
<tr>
<td>Master of Urban Design</td>
<td>Urban Design</td>
<td>APG12</td>
<td>EM030</td>
</tr>
<tr>
<td>MSc in Property Studies</td>
<td>Property Studies</td>
<td>CON03</td>
<td>EM013</td>
</tr>
<tr>
<td>MSc in Project Management</td>
<td>Project Management</td>
<td>CON06</td>
<td>EM014</td>
</tr>
<tr>
<td>Master of Landscape Architecture</td>
<td>Landscape Architecture</td>
<td>APG06</td>
<td>EM015</td>
</tr>
<tr>
<td>Master of Architecture (Professional)</td>
<td>Architecture</td>
<td>APG01</td>
<td>EM021</td>
</tr>
<tr>
<td>Master of Geotechnical Engineering</td>
<td>Geotechnical Engineering</td>
<td>CIV08</td>
<td>EM028</td>
</tr>
<tr>
<td>Master of Transport Studies</td>
<td>Transport Studies</td>
<td>CIV06</td>
<td>EM029</td>
</tr>
<tr>
<td>Master of Engineering</td>
<td>Water Quality Engineering</td>
<td>CIV02</td>
<td>EM017</td>
</tr>
<tr>
<td>Master of Science in Engineering</td>
<td>Geomatics</td>
<td>APG08</td>
<td>EM023/EM024</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>CHE01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>CIV01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geotechnical Engineering</td>
<td>CIV07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Engineering & Materials</td>
<td>CIV04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil Infrastructure Management and</td>
<td>CIV06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radar</td>
<td>EEE06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Power</td>
<td>EEE08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telecommunications</td>
<td>EEE09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master of Philosophy</td>
<td>Architecture & Planning</td>
<td>APG02</td>
<td>EM025/EM026</td>
</tr>
<tr>
<td>Master of Philosophy</td>
<td>Conservation of the Built Environment</td>
<td>APG05</td>
<td>EM026/EM027</td>
</tr>
<tr>
<td>Master of Philosophy</td>
<td>Sustainable Mineral Resource Development</td>
<td>CHE05</td>
<td>EM027</td>
</tr>
<tr>
<td>Master of Philosophy</td>
<td>Urban Infrastructure Design & Management</td>
<td>CIV03</td>
<td></td>
</tr>
<tr>
<td>Master of Philosophy</td>
<td>Transport Studies</td>
<td>CIV06</td>
<td></td>
</tr>
<tr>
<td>Master of Philosophy</td>
<td>Construction Economics & Management</td>
<td>CON01</td>
<td></td>
</tr>
<tr>
<td>Master of Philosophy</td>
<td>Radar</td>
<td>EEE06</td>
<td></td>
</tr>
</tbody>
</table>
Master of Architecture

NOTE: These rules must be read with the general rules for Master’s degrees in Handbook 3 of this series.

The Degree of MArch is offered by the Faculty through the School of Architecture, Planning and Geomatics.

Minimum Admission Requirements
FMAA1 Except with permission of the Senate, a candidate for the degree must be a BAS(Hons) graduate of this University, or a graduate of another University, who holds a degree recognised by Senate as being equivalent to a BAS(Hons) degree in the University, and be proficient in English.

Selection
FMAA2 Selection is based on an applicant's academic record and the availability of a suitable supervisor. Submission of a satisfactory research proposal may be required.

Duration
FMAA3 A candidate must be registered for the degree for a minimum period of one academic year.

Registration Requirements
FMAA4.1 Subject to the provisions of the Rule on Readmission, below, a candidate must register annually unless granted leave of absence by Senate.

FMAA4.2 A candidate registering for the first time may register at any time during the year.

FMAA4.3 Returning candidates for the degree must reregister by not later than the last Friday of February of each year.

Obtaining the Degree
FMAA5.1 A candidate shall present a dissertation (180 credits) incorporating any or all of the following:

(a) a research project of a theoretical or practical nature;
(b) a critical review of a specified topic based upon a comprehensive search of literature or available data;
(c) design of all or part of an architectural project or group of projects to a specification involving advanced concepts and theoretical principles;
(d) development of a technique involving novel technological features or advanced design;
(e) any other study acceptable to the Faculty of Engineering and the Built Environment.

FMAA5.2 The candidate's supervisor shall submit written evidence to the Faculty Examinations Committee that the candidate has, with the approval of the supervisor, submitted a paper for presentation at a conference or for publication in a journal recognised by Senate.
Supervision
FMAA6.1 A candidate shall work under the guidance of a supervisor appointed by Senate and shall be required to attend at the University for a minimum period of at least one month per annum for supervision purposes for as long as he/she continues to be a candidate for the degree.

FMAA6.2 A change of supervisor or a change to a candidate's field of study/research is subject to the approval of Senate.

Progress Report
FMAA7 A candidate shall submit a written report to the supervisor by 31 July each year, setting out, briefly, the progress made during the preceding twelve months or, if the period of registration is less than twelve months the period that is relevant.

Readmission
FMAA8.1 Except by permission of the Senate, a candidate may not renew his or her registration if he or she fails to make progress with his/her research project or dissertation to the satisfaction of Senate.

FMAA8.2 A candidate who is required by the Faculty Examination Committee to correct or revise his or her research dissertation shall complete the corrections/revisions within one year of the date of the Committee's decision, failing which he/she shall not be permitted to continue with or reregister for his/her degree without the special permission of Senate.

Submission of Dissertation and Paper
FMAA9.1 A candidate intending to submit a dissertation in the hope of the award of the degree in either June or December, must, in the year in which the dissertation is to be submitted, inform the Faculty Manager (Academic Administration) in writing of such intention by 15 February or 15 July respectively in the year in which the dissertation is to be submitted. The final date for receipt by the Faculty Manager (Academic Administration) of a Master's dissertation submitted in the hope of the award of the degree either in June or December is 31 March or 31 August respectively.

FMAA9.2 After consultation with the supervisor, a candidate shall submit his/her dissertation via PeopleSoft for examination.

FMAA9.3 The candidate shall submit a summary of the key aspects of the dissertation, presented in the form of a paper which is, potentially, of publishable standard, approved by the supervisor. The final date for receipt of the paper by the Faculty Office shall be 30 April in the case of a candidate who submits a dissertation in hope of the award of the degree in June or 31 October in the case of a candidate who submits a dissertation in hope of the award of the degree in December. Note: The Paper requirement is intended to develop a candidate's skills in academic communication through exposure to the discipline of preparing a scholarly, succinct overview of the subject of the research topic, with due attention to structure, detail, clarity of expression and referencing.

FMAA9.4 No dissertation or part thereof which has previously been submitted for examination for any degree at any university shall be accepted for a Master's degree in the Faculty of Engineering & the Built Environment.
Examination and Ethics Clearance
FMAA10.1 Examination is by dissertation unless otherwise stated. The dissertation must be satisfactory in arrangement and expression and must be typewritten or printed. Each candidate must comply with such other requirements as the Board of the Faculty of Engineering and the Built Environment, on the recommendation of the Director of the School of Architecture, Planning and Geomatics, may prescribe.

FMAA10.2 A candidate may be required to present himself or herself for an oral examination on the subject of the dissertation.

FMAA10.3 A candidate may not submit his/her dissertation for examination more than twice.

FMAA10.4 No dissertation or research report involving human (or animal) subjects, where ethics clearance has not been obtained beforehand, will be examined.

Publication
FMAA11.1 When presenting the dissertation the candidate shall by so doing grant a free licence to the University to publish it in whole or part at any time and in any manner or format.

FMAA11.2 No publication may, without the prior permission of the University, contain a statement that the published material was or is to be submitted in part or in full for this degree.

Award of the Degree
FMAA12.1 The degree may be awarded with distinction if both examiners recommend that the dissertation be awarded with distinction.

FMAA12.2 The University does not undertake to reach a decision on the award of the degree by any specific date.

Upgrading to PhD
FMAA13 The Senate may on the recommendation of the Faculty and the candidate's supervisor upgrade a candidate's registration to PhD on the grounds of the quality and development of the candidate's work.

Master of Architecture (Professional)
A qualifying degree in Architecture that provides learners with the knowledge, values and skills to enter the profession of architecture and/or to pursue further qualifications in architecture or fields associated with the architectural profession and built environment. It is focused on developing independent critical inquiry in preparation for practice in a diverse and changing world. Students are given considerable freedom and support to develop a reflective, critical and speculative relationship to their work. The qualification introduces a Master's degree within a succession of qualifications leading towards professional qualification in architecture. It is a prerequisite qualification for statutory registration as a Candidate Architect with the South African Council for the Architectural Profession (SACAP), in terms of the Architectural Professions Act 2000 (Act No 44 of 2000). To attain registration as Professional Architect, the candidate must complete a two-year period of practical experience in an architectural office and pass a registration exam set by SACAP.

NOTE: These rules must be read with the general rules for Master’s degrees in Handbook 3 of this series.
The Degree of MArch(Prof) is offered by the Faculty through the School of Architecture, Planning and Geomatics.

Minimum Admission Requirements

FMAB1 Except with permission of the Senate, a candidate for the degree must be a BAS(Hons) graduate of this University, or a graduate of another University, who holds a degree recognised by Senate as being equivalent, and be proficient in English.

Selection

FMAB2.1 Graduates of the Bachelor of Architectural Studies (Honours) from this University will be eligible to apply for the Master of Architecture (Professional).

FMAB2.2 Any graduate from the Bachelor of Architectural Studies (Honours) degree who wishes to enter the degree after an absence of more than three years, must, apply to Senate for entry by letter of motivation.

FMAB2.3 Any graduate wishing to enter the degree from another University must submit an application to the University on the prescribed UCT form, by the date stipulated by the University. In addition applicants must prepare a submission for the School of Architecture, the requirements of which are available from the School of Architecture. Selection is at the discretion of the Admissions Committee. Admission into the MArch(Prof) will depend on the applicant's design ability, academic record, work experience and student numbers.

Duration

FMAB3.1 The minimum duration of the Master of Architecture (Professional) is one year of full-time study.

FMAB3.2 Except with the permission of Senate, students who register for the Master of Architecture (Professional) degree, must register for the full year's study.

Obtaining the Degree

FMAB4.1 A candidate shall present a 60 credit Research Paper in the form of Theory and Technology Studies in the first semester.

FMAB4.2 A candidate shall present a Design Dissertation (120 credits) incorporating:

(a) a self-motivated design project ; and
(b) a Design Research Report of a theoretical nature in support of the Design Project.

Readmission

FMAB5.1 Except by permission of the Senate, a candidate who fails the Design Dissertation, on repeating the course, shall be required to select a new topic.

FMAB5.2 A candidate who fails a Research Paper will be allowed to repeat that component in the following year.

FMAB5.3 A candidate will be allowed to repeat a course only once.

Method of Assessment

FMAB6.1 Satisfactory performance of the duly performed certificate (DP) requirements applies to all courses. A student gains entry to final assessment by satisfactory performance of the duly performed (DP) requirements. A student may be refused
permission (DPR) to sit for the examination or review if he or she fails to satisfy the
Senate that he or she has satisfactorily attended and duly performed the required
work set in the conditions for the award of a DP certificate.

FMAB6.2 A DP certificate may be withheld unless: all parts of each studio work project,
tutorial or other assignment are completed to an acceptable standard and submitted
for assessment at the stipulated times; there is satisfactory attendance (minimum of
80%), and a generally satisfactory participation in all sections of the course.

FMAB6.3 Assessment by formal examination may be by means of a written or oral
examination or term paper. An external examiner is appointed for each course
assessed by examination.

Degree with Distinction
FMAB7 The degree will be awarded with distinction to a candidate who obtains the degree
in the first academic year of study with a first for the Design Dissertation and a
minimum of 70% for the Theory and Technology Studies course.

Ethics Clearance
FMAB8 No dissertation or research report involving human (or animal) subjects, where
ethics clearance has not been obtained beforehand, will be examined.

Master of Urban Design
(NOTE: These rules must be read with the general rules for Master’s degrees in Handbook 3 of this
series.)

The Degree of M of Urban Design is offered by the Faculty through the School of Architecture,
Planning and Geomatics.

The increasingly large scale, complex, and diverse nature of cities demands the expansion of
traditional architectural capabilities to embrace an understanding of the structure and functioning,
and three-dimensional design and management of, human settlements. The MUD degree curriculum
comprises one year of full-time study, open to Honours or Masters-level graduates in Architecture,
Landscape Architecture, or Planning from any recognised institution approved by Senate. However,
in terms of rule FMB6.1, BAS(Hons); MLA and BCP(Hons) graduates from the University who
have completed prescribed work in the theory of City Planning and Urban Design while registered
for that degree, may obtain exemption from courses in the first semester of the curriculum for the
MUD degree. All students entering the programme must do so in the first semester of the year.
Course work in the programme includes the theoretical and practical subject matter necessary to
meet the requirements of the Certification of Environmental Assessment Practitioners in South
Africa.

Minimum Admission Requirements
FMAB1 A person shall not be admitted as a candidate for the degree unless he or she is
proficient in English and
(a) is an Honours or Masters graduate in Architecture, Landscape Architecture
and Planning of the University or of another University recognised by the
Senate for the purpose; or
Alternatively could be a graduate from Honours or Masters in Planning or a
similar discipline with design training evidenced in a portfolio which is part
of the application and to the satisfaction of the Selection Committee.
(b) has passed at any University or at any Institution recognised by the Senate for the purpose, such examinations are, in the opinion of the Senate, equivalent to the examinations prescribed for the BAS(Hons), MArch(Prof), MLA and BCP(Hons) degrees at the University; or

(c) has in any other manner attained a level of competence which in the opinion of Senate, on the recommendation of the Faculty of Engineering and the Built Environment is adequate for the purposes of admission as a candidate for the degree.

Selection
FMB2 Selection is based on an applicant’s academic record and where an applicant holds a one-year BAS(Hons); one-year M.Arch(Prof), two-year MLA degree or the Bachelor of City Planning (Honours), in order to be considered for entry into the MUD programme. All applicants must also submit a portfolio of design work, and other material as specified in the Application Form, for consideration by an Admissions Committee. Entry into the programme is limited. Applicants without a design background will be required to apply for the Conversion course before applying for the one-year MUD.

Duration
FMB3 The curriculum for the degree shall extend over a minimum of one (full-time) academic year of study or two years extended-time.

Registration Requirements
FMB4.1 Subject to the provisions of the rule on Readmission, below, a candidate must register annually unless granted leave of absence by Senate.

FMB4.2 A candidate must register or reregister by not later than the end of Registration Week if taking first semester courses or, if any of the courses begins earlier, by not later than the date on which the first course starts.

FMB4.3 A candidate must register or reregister by not later than end of registration week if taking only second semester courses.

FMB4.4 A candidate's registration for the second semester shall be provisional until he or she completes the work of the first semester.

Obtaining the Degree
FMB5 A candidate shall undertake advanced study by coursework and shall comply with the curriculum requirements prescribed by Senate. (The curriculum requirements are obtainable on request from the Programme Co-ordinator.)

Recognition of Courses Taken at this or another Institution
FMB6.1 The Senate may grant exemption from courses in the first semester of the curriculum to a BArch graduate of the University who has completed prescribed work in the theory of City Planning and Urban Design while registered for the BArch degree.

FMB6.2 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities, shall not be carried forward for credit except by special permission of Senate.
Readmission

FMB7 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, fails to complete courses to the value of not less than 50% of the total credits for which he or she is registered in the year concerned. With respect to studiowork, the first semester Urban Design Studio is a pre-requisite for the Urban Design Research Project. A student may only commence with the Urban Design Research Project once the first semester courses, Theory of Urban Design I; Urban Design Studio and Research Methods for Urban Design have been completed.

Submission of Dissertation and Ethics Clearance

FMB8.1 A candidate must complete a dissertation on a subject approved by the Senate under the supervision of a member of staff appointed by the Senate by due date.

Note. Detailed procedures for the dissertation will be made available to candidates at the time of registration. These procedures will give the dates for various stages, critically, the final date for submission. In exceptional cases the programme convener may allow a late submission, but in such cases a candidate will at best get a pass (third class) result.

FMB8.2 The candidate must submit two permanently bound copies of the dissertation and a digital copy to the Programme Administrator.

Note. The work is examined by two examiners, one of whom is always external to the department, and one of whom is internal. The external examiner retains his/her copy while the second copy is retained by the University after the examination result has been approved.

FMB8.3 No dissertation or research report involving human (or animal) subjects, where ethics clearance has not been obtained beforehand, will be examined.

Publication

FMB9.1 When presenting any written work for examination, a candidate shall by so doing grant a free licence to the University to publish it in whole or in part in any format that the University deems fit.

FMB9.2 Work produced as part of the requirements of courses prescribed for the degree remains the property of the University.

Award of the Degree

FMB10.1 A candidate who obtains first class passes for both the Urban Design Studio and the Urban Design Research Project as well as for either the Theory of Urban Design I or the Urban Design Theory II courses, shall be awarded the degree with distinction.

FMB10.2 The University does not undertake to reach a decision on the award of the degree by any specific date.
Master of City and Regional Planning

(NOTE: These rules must be read with the general rules for Master's degrees in Handbook 3 of this series.)

The Degree of MCRP is offered by the Faculty through the School of Architecture, Planning and Geomatics.

In South Africa at the present time there exists a strong need to produce professional planners capable of operating at both the city and regional scales. The study of city planning and regional planning has therefore been integrated in a single comprehensive programme.

The MCRP degree programme has been structured so as to accommodate the basic differences and overlaps between the city and regional planning stream, and city planning and urban design stream. Coursework in the programme includes the theoretical and practical subject matter necessary to meet the requirements of the Certification of Environmental Practitioners in South Africa.

Minimum Admission Requirements

FMC1 A person shall not be admitted as a candidate for the degree unless he or she is proficient in English and

(a) is a graduate from the Bachelor of City Planning (honours) degree programme at UCT.

Selection

FMC2 Graduates of the Bachelor of City Planning (Honours) degree from this University will be eligible to apply for the Master of City and Regional Planning.

Duration

FMC3 The curriculum for the degree shall extend over a minimum of two academic years of study.

Registration Requirements

FMC4.1 Subject to the provisions of the rule on Readmission, below, a candidate must register annually unless granted leave of absence by Senate.

FMC4.2 A candidate must register or reregister by not later than the end of Registration Week if taking first semester courses or, if any of the courses begin earlier, by not later than the date on which the first course starts.

FMC4.3 A candidate must register or reregister by not later than end of registration week if taking only second semester courses or if registering only for a thesis or dissertation.

FMC4.4 A candidate's registration for the second semester shall be provisional until he or she completes the work of the first semester.

Obtaining the Degree

FMC5 A candidate shall undertake advanced study by coursework and shall comply with the curriculum requirements prescribed by Senate. (The curriculum requirements are obtainable on request from the Programme Co-ordinator.)

Courses Completed at this or another University/Institution

FMC6.1 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities, shall not be carried forward for credit except by special permission of Senate.
Readmission
FMC7 Except by the permission of Senate, a candidate may not renew his or her registration if he or she fails to complete courses to the value of not less than 50% of the total credits for which he or she is registered, or if he or she fails to make progress with his or her dissertation APG5051Z to the satisfaction of the Senate. APG5020F and APG5023F are pre-requisites for APG5051Z.

Submission of Dissertation and Ethics Clearance
FMC8.1 A candidate must complete a dissertation on a subject approved by the Senate under the supervision of a member of staff appointed by the Senate by due date. Note. Detailed procedures for the dissertation will be made available to candidates at the time of registration. These procedures will give the dates for various stages, critically, the final date for submission. In exceptional cases the programme convener may allow a late submission, but in such cases a candidate will at best get a pass (third class) result.

FMC8.2 The candidate must submit two permanently bound copies of the dissertation and a CD to the Academic Administrative Officer by due date. Note. The work is examined by two examiners, one of whom is always external to the department, and one of whom is internal. The external examiner retains his/her copy while the second copy is retained by the University after the examination result has been approved.

FM8.3 No dissertation or research report involving human (or animal) subjects, where ethics clearance has not been obtained beforehand, will be examined.

Publication
FMC9.1 When presenting any written work for examination a candidate shall by so doing grant a free licence to the University to publish it in whole or in part in any format that the University deems fit.

FMC9.2 Work produced as part of the requirements of courses prescribed for the degree remains the property of the University.

Award of the Degree
FMC10.1 A candidate who obtains first class passes in APG5020F; APG5023F; APG5024S as well as APG5051Z can be awarded the degree with distinction.

FMC10.2 The University does not undertake to reach a decision on the award of the degree by any specific date.

FMC10.3 No dissertation or research report involving human (or animal) subjects, where ethics clearance has not been obtained beforehand, will be examined.
Master of Engineering

(NOTE: These rules must be read with the general rules for Master's degrees in Handbook 3 of this series.)

This degree is offered through the Faculty for specialisations in Minerals Beneficiation (Department of Chemical Engineering), Civil Infrastructure Management and Maintenance, Structural Engineering and Materials, Transport Studies and Water Quality Engineering (Department of Civil Engineering) Radar, Nuclear Power and Telecommunications (Department of Electrical Engineering).

Minimum Admission Requirements

FMD1 A person shall not be admitted as a candidate for the degree unless he or she is proficient in English and

(a) is a graduate of the Faculty or of an engineering or geomatics programme of any other university recognized for the purpose; or
(b) holds an appropriate BSc(Hons) degree; or
(c) holds an approved three-year degree and (i) who has a minimum of five years’ experience relevant to the field in which he/she proposes to study, or (ii) who in addition to the standard programme requirement first completes a minimum of 144 credits of approved coursework; or
(d) has passed at any university or institution recognized for the purpose, such examinations as are, in the opinion of the Senate, equivalent to the examinations prescribed for the degree of BSc(Eng) or BSc(Geomatics) at the University; or
(e) has in any other manner attained a level of competence which in the opinion of Senate on the recommendation of the Faculty, is adequate for the purpose of admission as a candidate for the degree.

Selection

FMD2 Selection is based on an applicant's academic record and the availability of a suitable programme and research project supervisor. Submission of a satisfactory research topic may be required.

Duration

FMD3 A candidate shall be registered for the degree for a period of not less than one year.

Registration Requirements

FMD4.1 Subject to the provisions of the rule on Readmission, below, a candidate must register annually unless granted leave of absence by Senate.

FMD4.2 A new candidate must register by not later than the date on which his or her first course starts. A continuing candidate must reregister by not later than 28 February.

Obtaining the Degree

FMD5 A candidate shall undertake advanced study by coursework to the value of a minimum of 120 credits and a minor dissertation to the value of 60 credits.

Courses Completed at this or another University/Institution

FMD6.1 For the purpose of granting credit for and/or exemption from a course prescribed as a curriculum requirement, the Senate may recognise a course or courses completed at this or another university or institution recognised for the purpose, provided that (i) such courses have not been counted for a qualification at the University or at any other institution and (ii) at least half the courses prescribed for the Degree shall be
attended and passed at the University and (iii) the total period of attendance shall not be less than one year.

FMD6.2 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities, shall not be carried forward for credit except by special permission of Senate.

Examination and Ethics Clearance

FMD7.1 A candidate for the degree shall complete prescribed courses to the value of 120 credits and a project report on the subject of the minor dissertation to a value of 60 credits.

FMD7.2 A candidate shall not be permitted to submit his/her minor dissertation for examination more than twice.

FMD7.3 A candidate may be required to present him or herself for an oral examination on the research project, or an essay assignment.

FMD7.4 No dissertation or project report involving human (or animal) subjects, where ethics clearance has not been obtained beforehand, will be examined.

Readmission

FMD8.1 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree, fails to complete courses of a value of not less than 50% of the total credits for which he or she is registered in the year concerned (or if he or she fails to make progress with his or her dissertation to the satisfaction of Senate).

FMD8.2 Except by permission of the Senate, a MEng candidate may not renew his or her registration if he or she, in the courses recognised for the degree fails to complete a course after having been registered for it twice or, in the case of the minor dissertation, submits the dissertation and fails the examination.

Submission of Minor Dissertation

FMD9.1 A candidate intending to submit a minor dissertation in the hope of the completion of the requirements for the award of the degree in either June or December, must, in the year in which the dissertation is to be submitted, inform the supervisor in writing of such intention by 15 February or 15 July respectively in the year in which the dissertation is to be submitted. The final date for receipt of a Master of Engineering minor dissertation submitted in the hope of the award of the degree either in June or December is 30 March or 31 August respectively.

FMD9.2 After consultation with the supervisor, a candidate shall submit his or dissertation via PeopleSoft for examination.

FMD9.3 No minor dissertation or part thereof which has previously been submitted for examination for any degree at any university shall be accepted for a Master’s degree in the Faculty of Engineering & the Built Environment.

Publication

FMD10 When presenting his or her minor dissertation the candidate shall by so doing grant a free licence to the University to publish it in whole or part at any time and in any manner or format that the University deems fit.
Award of the Degree with Distinction

FMD11.1 The degree may be awarded with distinction if the candidate obtains an average of at least 75% for all coursework and the examiners all recommend that the dissertation be awarded with distinction.

FMD11.2 The University does not undertake to reach a decision on the award of the degree by any specific date.

Changing to MSc(Eng)

FMD12 The Senate may on the recommendation of the Faculty and the candidate's supervisor upgrade a candidate's registration to MSc(Eng) on the grounds of the quality and development of the candidate's work. Upgrading an MEng to PhD is not possible.

Master of Geotechnical Engineering

(NOTE: These rules must be read with the general rules for Master's degrees in Handbook 3 of this series.)

The Degree of Master of Geotechnical Engineering is offered by the Faculty through the Department of Civil Engineering

Minimum Admission Requirements

FMD1 A person shall not be admitted as a candidate for the degree unless he or she:

(a) holds a four year bachelor's degree or honours degree of the University or any other university recognised for the purpose; or

(b) holds an approved three year degree and (i) who has a minimum of five years experience relevant to the field in which he/she proposes to study, or (ii) in addition to the standard programme requirement first completes a minimum of 135 credits of approved coursework; or

(c) has passed at any university or institution recognized for the purpose, examinations as are, in the opinion of the Senate, equivalent to examinations prescribed for a degree in terms of (a) above; or

(d) has in any other manner attained a level of competence which in the opinion of the Senate on the recommendation of the Faculty, is adequate for the purpose of admission as a candidate for the degree.

Selection

FMD2 Selection is based on an applicant's academic record and the availability of a suitable programme and research project supervisor. Submission of a satisfactory research topic may be required.

Duration

FMD3 A candidate shall be registered for the degree for a period of not less than one year.

Registration Requirements

FMD4.1 Subject to the provisions of the rules on Readmission, below, a candidate must register annually unless granted leave of absence by Senate.

FMD4.2 A new candidate must register by not later than the date on which his or her first course starts. A continuing candidate must reregister by not later than 28 February.
Obtaining the Degree

FMD5 A candidate shall undertake advanced study by coursework to the value of a minimum of 135 credits and a project report to the value of 45 credits.

Courses Completed at this or another University/Institution

FMD6.1 For the purpose of granting credit for and/or exemption from a course prescribed as a curriculum requirement, the Senate may recognise a course or courses completed at this or another university or institution recognised for the purpose, provided that (i) such courses have not been counted for a qualification at the University or at any other institution and (ii) at least half the courses prescribed for the Degree shall be attended and passed at the University and (iii) the total period of attendance shall not be less than one year.

FMD6.2 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities, shall not be carried forward for credit except by special permission of Senate.

Examination and Ethics Clearance

FMD7.1 A candidate for the degree shall complete prescribed courses to the value of 135 credits and a project report on the subject to a value of 45 credits.

FMD7.2 A candidate shall not be permitted to submit his/her research project report for examination more than twice.

FMD7.3 A candidate may be required to take an oral examination on the research project, or an essay assignment.

FMD7.4 No dissertation or project report involving human (or animal) subjects, where ethics clearance has not been obtained beforehand, will be examined.

Readmission

FMD8.1 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree, fails to complete courses of a value of not less than 50% of the total credits for which he or she is registered in the year concerned (or if he or she fails to make progress with his or her project report to the satisfaction of Senate).

FMD8.2 Except by permission of the Senate, a ProfM Geotech candidate may not renew his or her registration if he or she, in the courses recognised for the degree fails to complete a course after having been registered for it twice or, in the case of the Project Report, submits the Report and fails the examination.

Submission of Project Report

FMD9.1 A candidate intending to submit a project in the hope of the completion of the requirements for the award of the degree in either June or December, must, in the year in which the project is to be submitted, inform the supervisor in writing of such intention by 15 March or 15 August respectively in the year in which the report is to be submitted. The final date for receipt of a Master of Engineering project report submitted in the hope of the award of the degree either in June or December is 30 April or 30 September respectively.

No project report or part thereof which has previously been submitted for examination for any degree at any university shall be accepted for a Master’s degree in the Faculty of Engineering & the Built Environment.
The degree will be awarded with distinction if the candidate obtains an average of at least 75% for all coursework and at least 75% for the 45 credit project report.

Master of Landscape Architecture

The Degree of MLA is offered by the Faculty through the School of Architecture, Planning and Geomatics.

(NOTE: These rules must be read with the general rules for Master's degrees in Handbook 3 of this series.)

Minimum Admission Requirements

FMG1 A person shall not be admitted as a candidate for the degree Master of Landscape Architecture unless he or she is proficient in English and

(a) is a graduate holding the degree of Bachelor of Architectural Studies from the University, or;

(b) has passed at any university or at any Institution recognized by the Senate for the purpose, such examinations as are, in the opinion of the Senate, equivalent to the examination prescribed for the Bachelor of Architectural Studies degree at the University; or

(c) has in any other manner attained a level of competence which in the opinion of Senate, on the recommendation of the Faculty of Engineering and the Built Environment is adequate for the purposes of admission as a candidate for the degree. Candidates holding non-design Bachelor’s degrees will be required to complete, for non-degree purposes, an initial year of design studies via the Bachelor of Architectural Studies programme before applying for entry into the two-year full time MLA programme. All courses comprising the Converso Course need to be completed before application into the MLA programme will be considered.

Selection

FMG2 Selection is based on the applicant's academic record (which must be of a standard sufficient to admit the student to Honours level studies, generally an average of 65% or above), a written motivation, the submission of a portfolio of design work (if a design portfolio is not available, this must be substituted by evidence of creative work, such as hand-drawn sketches (compulsory), painting or photography etc.), a critical response to a polemical article on landscape architecture, and consideration of the views of referees. The number of students accepted into the programme in any year is restricted by resource capacity of the programme.

Duration

FMG3 The degree programme shall extend over a minimum of two academic years of study.

Registration Requirements

FMG4.1 Subject to the provisions of the rule on Readmission, below, a candidate must register annually unless granted leave of absence by Senate.

FMG4.2 A candidate must register or reregister by not later than the end of Registration Week if taking first semester courses or, if any of the courses begin earlier, by not later than the date on which the first course starts.

FMG4.3 A candidate must register or reregister by not later than 28 February if taking only
second semester courses or if registering only for a thesis or dissertation.

FMG4.4 A candidate's registration for the second semester shall be provisional until he or she completes the work of the first semester.

Obtaining the Degree

FMG5 A candidate shall undertake advanced study by coursework and shall comply with the curriculum requirements prescribed by Senate. (The curriculum requirements are obtainable on request from the Programme Co-ordinator).

Recognition of Courses Taken at this or another Institution

FMG6.1 The Senate may accept as part of the attendance of a candidate qualifying him or her for admission to the degree, periods of attendance at this or another University or Institution recognised by the Senate for the purpose, and may further accept examinations passed at this or another University or Institution approved by the Senate as exempting a candidate from examinations in and for the purpose of granting him or her credit for such courses prescribed for the degree as Senate may consider equivalent, provided that a candidate for the degree

(a) shall attend the University as a candidate for the degree for at least eighteen months;

(b) shall complete at least three quarters of the courses prescribed for the degree in the School of Architecture, Planning and Geomatics.

FMG6.2 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities, shall not be carried forward for credit except by special permission of Senate.

Readmission

FMG7 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree, fails to complete courses of a value of not less than 50% of the total credits for which he or she is registered in the year concerned.

Publication

FMG8.1 When presenting any written work for examination, a candidate shall by so doing grant a free licence to the University to publish it in whole or part at any time and in any manner or format that the University deems fit.

FMG8.2 Work produced as part of the requirements of courses prescribed for the degree remains the property of the University.

Award of the Degree and Ethics Clearance

FMG9.1 A candidate who obtains first class passes in five or more courses, of which at least two shall be in theory courses and two in studio work courses, and who completes the degree within the prescribed two year period, shall be awarded the degree with distinction.

FMG9.2 The University does not undertake to reach a decision on the award of the degree by any specific date.

FMG9.3 No dissertation or project report involving human (or animal) subjects, where ethics clearance has not been obtained beforehand, will be examined.
Master's Degrees

Master of Philosophy

(NOTE: The degree of MPhil will normally be awarded for a dissertation or for a combination of coursework and dissertation.)

The Degree of MPhil is offered by the Faculty for work of an inter-disciplinary nature.

Minimum Admission Requirements

FMH1 A person shall not be admitted as a candidate for the degree unless he or she is proficient in English and

(a) holds a four-year bachelor’s degree, or honours degree of the University or of any other university recognised by the Senate for the purpose; or
(b) holds an approved three-year degree and (i) who has a minimum of five years’ experience relevant to the field in which he/she proposes to study, or (ii) who in addition to the standard programme requirement first completes a minimum of 144 credits of approved coursework; or
(c) has passed at any university or institution recognized for the purpose, such examinations as are, in the opinion of the Senate, equivalent to the examinations prescribed for an approved degree in terms of (a) above; or
(d) has in any other manner attained a level of competence which in the opinion of Senate on the recommendation of the Faculty, is adequate for the purpose of admission as a candidate for the degree.

Selection

FMH2 Selection is based on an applicant's academic record and the availability of a suitable supervisor. Submission of a 100 word statement of research interest and a letter of motivation are required. Submission of a satisfactory research proposal may be required.

Duration

FMH3 The degree programme shall extend over not less than one year.

Registration Requirements

FMH4.1 Subject to the provisions of the rule on Readmission below, a candidate must register annually unless granted leave of absence by Senate.

FMH4.2 A candidate must register or reregister by not later than the end of Registration Week if taking first semester courses or, if any of the courses begin earlier, by not later than the date on which the first course starts.

FMH4.3 A candidate must register or reregister by not later than 28 February if taking only second semester courses.

FMH4.4 A candidate, other than one registering for the first time, must reregister by not later than 28 February if registering only for the dissertation. A candidate who is registering for the degree for the first time and only for the dissertation, may register at any time during the year.

Obtaining the Degree

FMH5.1 A candidate may obtain the degree in one of the three following ways:

(i) by completing a dissertation (180 credits) which may incorporate any or all of the following:
 • design of all or part of an engineering or built environment project to a specification involving advanced concepts and theoretical principles;
• a theoretical and/or practical research project of an inter-disciplinary nature;
• a critical review of a specified topic based on a comprehensive search of the literature or available data of an inter-disciplinary nature; and
• any other study acceptable to the Faculty; or
(ii) by completing advanced study by coursework (as prescribed) of a minimum value of 60 credits (some programmes may require more) and a dissertation (120 credits) which may incorporate any or all of the elements referred to in sub-paragraph (i) above; or
(iii) by completing coursework of a minimum value of 120 credits and a minor dissertation of 60 credits.

NOTE: Option (ii) may not be offered by all Departments.

FMH5.2 The candidate's supervisor shall submit written evidence to the Faculty's Examinations Committee that the candidate has, with the approval of the supervisor, submitted a paper for presentation at a conference or for publication in a journal recognised by Senate, provided that this requirement shall not apply to a candidate who undertakes a structured programme of coursework to a value of 120 credits and a minor dissertation to a value of 60 credits.

Courses Completed at this or another University/Institution

FMH6.1 For the purpose of granting credit for and/or exemption from a course prescribed as a curriculum requirement, the Senate may recognise a course or courses completed at this or another university or institution recognised for the purpose, provided that (i) such courses have not been counted for a qualification at the University or at any other institution and (ii) at least half the courses prescribed for the Degree shall be attended and passed at the University and (iii) the total period of attendance shall not be less than one year.

FMH6.2 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities, shall not be carried forward for credit except by special permission of Senate.

Examination and Ethics Clearance

FMH7.1 A candidate shall complete

(a) a dissertation on the subject of the research project (180 credits); or
(b) if proceeding by research and coursework, prescribed courses of a minimum credits and a dissertation (120 credits) on the subject of the research project;
(c) if proceeding by coursework and research, prescribed courses of a minimum credits and a minor dissertation of 60 credits on the subject of the research toq

FMH7.2 A candidate shall not be permitted to submit his/her dissertation for examination more than twice.

FMH7.3 No dissertation involving human (or animal) subjects, where ethics clearance has not been obtained beforehand, will be examined.

Progress Report

FMH8 A candidate shall submit a written report to the supervisor by 31 July each year, setting out, briefly, the progress made during the preceding twelve months or, if the period of registration is less than twelve months, the period that is relevant.
Readmission
FMH9.1 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree, fails to complete courses of a value of not less than 50% of the total credits for which he or she is registered in the year concerned (or if he or she fails to make progress with his or her dissertation to the satisfaction of Senate).

FMH9.2 A candidate who is required by the Faculty Examination Committee to correct or revise his or her 120 or 180 credit research dissertation shall complete the corrections/revisions within one year of the date of the Committee's decision, failing which he/she shall not be permitted to continue with or reregister for his/her degree without the special permission of Senate.

Submission of Dissertation and Paper
FMH10.1 A candidate intending to submit a 120 or 180 credit dissertation in the hope of the award of the degree in either June or December, must, in the year in which the dissertation is to be submitted, inform the Faculty Manager (Academic Administration) in writing of such intention by 15 February or 15 July respectively in the year in which the dissertation is to be submitted. The final date for receipt by the Faculty Manager of a Master's dissertation submitted in the hope of the award of the degree either in June or December is 31 March or 31 August respectively.

FMH10.2 After consultation with the supervisor, a candidate shall submit his/her dissertation via PeopleSoft for examination.

FMH10.3 The candidate of a 120 or 180 credit research dissertation shall submit a summary of the key aspects of the dissertation, presented in the form of a paper which is, potentially, of publishable standard, approved by the supervisor. The final date for receipt of the paper by the Faculty Office shall be 30 April in the case of a candidate who submits a dissertation in hope of the award of the degree in June or 31 October in the case of a candidate who submits a dissertation in hope of the award of the degree in December.

Note: The Paper requirement is intended to develop a candidate's skills in academic communication through exposure to the discipline of preparing a scholarly, succinct overview of the subject of the research topic, with due attention to structure, detail, clarity of expression and referencing.

FMH10.4 No dissertation or part thereof, which has previously been submitted for examination for any degree at any university shall be accepted for a master's degree in the Faculty of Engineering and the Built Environment.

Publication
FMH11.1 When presenting his or her dissertation the candidate shall by so doing grant a free licence to the University to publish it in whole or part at any time and in any manner or format that the University deems fit.

FMH11.2 No publication may, without the prior permission of the University, contain a statement that the published material was or is to be submitted in part or in full for this degree.

Award of the Degree with Distinction
FMH12.1 Distinctions are awarded as follows for the Master of Philosophy:

The degree may be awarded with distinction if the candidate obtains an average of
at least 75% for all coursework and the examiners all recommend that the 60 credit
dissertation be awarded with distinction.

The degree may be awarded with distinction if the candidate obtains an average of
at least 75% for all coursework; and a recommendation from both external
examiners that the 120 credit dissertation be awarded with distinction; or
the dissertation may be awarded with distinction if the candidate obtains an average
of at least 50-74% for all coursework; and a recommendation from both external
examiners that the 120 credit dissertation be awarded with distinction.

The degree may be awarded with distinction if both external examiners recommend
that the 180 credit dissertation be awarded with distinction.

FMH12.2 The University does not undertake to reach a decision on the award of the degree by
any specific date.

Upgrading to PhD
FMH13 The Senate may on the recommendation of the Faculty and the candidate's
supervisor upgrade a candidate's registration to PhD on the grounds of the quality
and development of the candidate's work.

Master of Philosophy specialising in Conservation of the Built Environment
(NOTE: These rules must be read with the general rules for Master’s degrees in Handbook 3 of this
series.)

This programme is offered by the Faculty through the School of Architecture, Planning &
Geomatics.

Minimum Admission Requirements
FMHA1 A person shall not be admitted as a candidate for the degree unless he or she is
proficient in English and
(a) is a graduate of the University with a four-year bachelor level or honours
degree in a field related to the built environment; or
(b) holds an approved three-year degree and (i) who has a minimum of five
years’ experience relevant to the field in which he/she proposes to study,
or (ii) who in addition to the standard programme requirement first
completes a minimum of 144 credits of approved coursework; or
(c) has passed at any University or at any Institution recognised by Senate
for the purpose, such examinations as are, in the opinion of Senate,
equivalent to a degree in terms of (a) above; or
(d) has in any other manner attained a level of competence which, in the
opinion of Senate, on the recommendation of the Faculty, is adequate for
the purposes of admission as a candidate for the degree.

Selection
FMHA2 Selection is based on an applicant's academic record and experience.

Duration
FMHA3 A candidate must be registered for the degree for at least two academic years.

Registration Requirements
FMHA4.1 A candidate must register or reregister by not later than the end of Registration
Week if taking first semester courses or, if any of the courses begins earlier, by not
50 MASTER'S DEGREES

later than the date on which the first course starts.

FMHA4.2 A candidate must register or reregister by not later than 28 February if taking only second semester courses.

FMHA4.3 Except with the permission of the Senate, a candidate may not withdraw from a course which he or she is repeating.

FMHA4.4 A candidate, other than one registering for the first time for the degree must reregister by not later than 28 February if registering only for a dissertation or only for a project. A candidate who is registering for the degree for the first time and, only for a dissertation, may register at any time during the year.

Minimum Number of Courses
FMHA5 A candidate must register for at least two courses, other than the dissertation or the research project, per year except where only one course module is required to complete the degree.

Obtaining the Degree
FMHA6 A candidate shall be required to complete advanced study by coursework (as prescribed) of a minimum value of 120 credits and a research report on the subject of a minor dissertation of a minimum value of 60 credits.

Courses Completed at this or another University/Institution
FMHA7.1 For the purpose of granting credit for and/or exemption from a course prescribed as a curriculum requirement, the Senate may recognise a course or courses completed at this or another university or institution recognised for the purpose, provided that (i) such courses have not been counted for a qualification at the University or at any other institution and (ii) at least half the courses prescribed for the Degree shall be attended and passed at the University and (iii) the total period of attendance shall not be less than one year.

FMHA7.2 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities, shall not be carried forward for credit except by special permission of Senate.

Examination and Ethics Clearance
FMHA8.1 A candidate shall complete prescribed courses to the value of 120 credits and a research report on the subject of the minor dissertation to a value of 60 credits.

FMHA8.2 A candidate may be required to present himself or herself for an oral examination on the subject of the research report.

FMHA8.3 No research report involving human (or animal) subjects, where ethics clearance has not been obtained beforehand, will be examined.

FMHA8.4 A candidate intending to submit a 60 credit dissertation in the hope of the award of the degree in either June or December, must, in the year in which the dissertation is to be submitted, inform the HOD in writing of such intention by 15 February or 15 July respectively in the year in which the dissertation is to be submitted. The final date for receipt of a Master's dissertation submitted in the hope of the award of the degree either in June or December is 31 March or 31 August respectively.
Progress Report
FMHA9 A candidate shall submit a written report to the Head of Department by 31 July each year, setting out, briefly, the progress made during the preceding twelve months or, if the period of registration is less than twelve months, the period that is relevant.

Readmission
FMHA10.1 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree, fails to complete courses of a value of not less than 50% of the total credits for which he or she is registered in the year concerned (or if he or she fails to make progress with his or her dissertation and/or research project to the satisfaction of Senate).

FMHA10.2 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree fails to complete a course after having been registered for it twice.

Method of Assessment
FMHA11.1 Satisfactory performance of the duly performed certificate (DP) requirements applies to all courses. A student gains entry to final assessment by satisfactory performance of the duly performed (DP) requirements. A student may be refused permission (DPR) to sit for the examination or review if he or she fails to satisfy the Senate that he or she has satisfactorily attended and duly performed the required work set in the conditions for the award of a DP certificate.

FMHA11.2 A DP certificate may be withheld unless: all parts of each studio work project, tutorial or other assignment are completed to an acceptable standard and submitted for assessment at the stipulated times; there is satisfactory attendance (minimum of 80%), and a generally satisfactory participation in all sections of the course.

Method of Assessment
FMHA11.3 Assessment by formal examination may be by means of a written or oral examination or term paper. An external examiner is appointed for each course assessed by examination.

Publication
FMHA12.1 When presenting his or her project report the candidate shall by so doing grant a free licence to the University to publish it in whole or part at any time and in any manner or format that the University deems fit.

FMHA12.2 No publication may, without the prior permission of the University, contain a statement that the published material was or is to be submitted in part or in full for this degree.

Award of the Degree with Distinction
FMHA13.1 The degree may be awarded with distinction if the candidate obtains an average of at least 75% for all coursework and the examiners all recommend that the 60 credit dissertation be awarded with distinction.

FMHA13.2 The University does not undertake to reach a decision on the award of the degree by any specific date.
Master of Philosophy specialising in Engineering Management

(Note: These rules must be read with the general rules for Master's degrees in Handbook 3 of this series.)

This programme is offered by the Faculty through the Department of Mechanical Engineering

Minimum Admission Requirements

FMHB1 A person shall not be admitted as a candidate for the degree unless he or she is proficient in English and

(a) is a graduate of the University with a four-year bachelor level or honours degree in a related field; or

(b) holds an approved three-year degree and (i) who has a minimum of five years’ experience relevant to the field in which he/she proposes to study, or (ii) who in addition to the standard programme requirement first completes a minimum of 144 credits of approved coursework; or

(c) has passed at any University or at any Institution recognised by Senate for the purpose, such examinations as are, in the opinion of Senate, equivalent to a degree in terms of (a) above; or

(d) has in any other manner attained a level of competence which, in the opinion of Senate, on the recommendation of the Faculty, is adequate for the purposes of admission as a candidate for the degree.

Selection

FMHB2 Selection is based on an applicant's academic record and experience.

Duration

FMHB3 A candidate must be registered for the degree for at least two academic years.

Registration Requirements

FMHB4.1 A candidate must register or reregister by not later than the end of Registration Week if taking first semester courses or, if any of the courses begins earlier, by not later than the date on which the first course starts.

FMHB4.2 A candidate must register or reregister by not later than 28 February if taking only second semester courses.

FMHB4.3 Except with the permission of the Senate, a candidate may not withdraw from a course which he or she is repeating.

FMHB4.4 A candidate, other than one registering for the first time for the degree must reregister by not later than 28 February if registering only for a dissertation or only for a project. A candidate who is registering for the degree for the first time and, only for a dissertation, may register at any time during the year.

Minimum Number of Courses

FMHB5 A candidate must register for at least two courses, other than the dissertation or the research project, per year except where only one course module is required to complete the degree.

Obtaining the Degree

FMHB6 A candidate shall be required to complete advanced study by coursework (as prescribed) of a minimum value of 120 credits and a research report on the subject of a minor dissertation of a minimum value of 60 credits.
Courses Completed at this or another University/Institution
FMHB7.1 For the purpose of granting credit for and/or exemption from a course prescribed as a curriculum requirement, the Senate may recognise a course or courses completed at this or another university or institution recognised for the purpose, provided that (i) such courses have not been counted for a qualification at the University or at any other institution and (ii) at least half the courses prescribed for the Degree shall be attended and passed at the University and (iii) the total period of attendance shall not be less than one year.

FMHB7.2 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities, shall not be carried forward for credit except by special permission of Senate.

Examination and Ethics Clearance
FMHB8.1 A candidate shall complete prescribed courses to the value of 120 credits and a research report on the subject of the minor dissertation to a value of 60 credits.

FMHB8.2 A candidate may be required to present himself or herself for an oral examination on the subject of the research report.

FMHB8.3 No research report involving human (or animal) subjects, where ethics clearance has not been obtained beforehand, will be examined.

FMHB8.4 A candidate intending to submit a 60 credit dissertation in the hope of the award of the degree in either June or December, must, in the year in which the dissertation is to be submitted, inform the Hod in writing of such intention by 15 February or 15 July respectively in the year in which the dissertation is to be submitted. The final date for receipt of a Master's dissertation submitted in the hope of the award of the degree either in June or December is 31 March or 31 August respectively.

Progress Report
FMHB9 A candidate shall submit a written report to the Head of Department by 31 July each year, setting out, briefly, the progress made during the preceding twelve months or, if the period of registration is less than twelve months, the period that is relevant.

Readmission
FMHB10.1 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree, fails to complete courses of a value of not less than 50% of the total credits for which he or she is registered in the year concerned (or if he or she fails to make progress with his or her dissertation and/or research project to the satisfaction of Senate).

FMHB10.2 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree fails to complete a course after having been registered for it twice.

Method of Assessment
FMHB11.1 Satisfactory performance of the duly performed certificate (DP) requirements applies to all courses. A student gains entry to final assessment by satisfactory performance of the duly performed (DP) requirements. A student may be refused permission (DPR) to sit for the examination or review if he or she fails to satisfy the Senate that he or she has satisfactorily attended and duly performed the required work set in the conditions for the award of a DP certificate.
FMHB11.2 A DP certificate may be withheld unless: all parts of each studio work project, tutorial or other assignment are completed to an acceptable standard and submitted for assessment at the stipulated times; there is satisfactory attendance (minimum of 80%), and a generally satisfactory participation in all sections of the course.

FMHB11.3 Assessment by formal examination may be by means of a written or oral examination or term paper. An external examiner is appointed for each course assessed by examination.

Publication
FMHB12.1 When presenting his or her project report the candidate shall by so doing grant a free licence to the University to publish it in whole or part at any time and in any manner or format that the University deems fit.

FMHB12.2 No publication may, without the prior permission of the University, contain a statement that the published material was or is to be submitted in part or in full for this degree.

Award of the Degree with Distinction
FMHB13.1 The degree may be awarded with distinction if the candidate obtains an average of at least 75% for all coursework and the examiners all recommend that the 60 credit dissertation be awarded with distinction.

FMHB13.2 The University does not undertake to reach a decision on the award of the degree by any specific date.

Master of Philosophy specialising in Nuclear Power
(NOTE: These rules must be read with the general rules for Master’s degrees in Handbook 3 of this series.)

This programme is offered by the Faculty through the Department of Electrical Engineering

Minimum Admission Requirements
FMP1 A person shall not be admitted as a candidate for the degree unless he or she is proficient in English and
(a) is a graduate of the University with a four-year bachelor level or honours degree in a related field; or
(b) holds an approved three-year degree and (i) who has a minimum of five years’ experience relevant to the field in which he/she proposes to study, or (ii) who in addition to the standard programme requirement first completes a minimum of 144 credits of approved coursework; or
(c) has passed at any University or at any Institution recognised by Senate for the purpose, such examinations as are, in the opinion of Senate, equivalent to a degree in terms of (a) above; or
(d) has in any other manner attained a level of competence which, in the opinion of Senate, on the recommendation of the Faculty, is adequate for the purposes of admission as a candidate for the degree.

Selection
FMP2 Selection is based on an applicant's academic record and experience.

Registration Requirements
FMP3.1 A candidate must register or reregister by not later than the end of Registration
Week if taking first semester courses or, if any of the courses begins earlier, by not later than the date on which the first course starts.

FMP3.2 A candidate must register or reregister by not later than 28 February if taking only second semester courses.

FMP3.3 Except with the permission of the Senate, a candidate may not withdraw from a course which he or she is repeating.

Minimum Number of Courses
FMP4 A candidate must register for at least two courses, other than the dissertation or the research project, per year except where only one course module is required to complete the degree.

Obtaining the Degree
FMP5 A candidate shall be required to complete advanced study by coursework (as prescribed) of a minimum value of 120 credits and a research report on the subject of a minor dissertation of a minimum value of 60 credits.

Courses Completed at this or another University/Institution
FMP6.1 For the purpose of granting credit for and/or exemption from a course prescribed as a curriculum requirement, the Senate may recognise a course or courses completed at this or another university or institution recognised for the purpose, provided that (i) such courses have not been counted for a qualification at the University or at any other institution and (ii) at least half the courses prescribed for the Degree shall be attended and passed at the University and (iii) the total period of attendance shall not be less than one year.

FMP6.2 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities, shall not be carried forward for credit except by special permission of Senate.

Examination and Ethics Clearance
FMP7.1 A candidate shall complete prescribed courses to the value of 120 credits and a research report on the subject of the minor dissertation to a value of 60 credits.

FMP7.2 A candidate may be required to present himself or herself for an oral examination on the subject of the research report.

FMP7.3 No research report involving human (or animal) subjects, where ethics clearance has not been obtained beforehand, will be examined.

FMP7.4 A candidate intending to submit a 60 credit dissertation in the hope of the award of the degree in either June or December, must, in the year in which the dissertation is to be submitted, inform the Hod in writing of such intention by 15 February or 15 July respectively in the year in which the dissertation is to be submitted. The final date for receipt of a Master's dissertation submitted in the hope of the award of the degree either in June or December is 31 March or 31 August respectively.

Progress Report
FMP8 A candidate shall submit a written report to the Head of Department by 31 July each year, setting out, briefly, the progress made during the preceding twelve months or, if the period of registration is less than twelve months, the period that is relevant.
Readmission
FMP9.1 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree, fails to complete courses of a value of not less than 50% of the total credits for which he or she is registered in the year concerned (or if he or she fails to make progress with his or her dissertation and/or research project to the satisfaction of Senate).

FMP9.2 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree fails to complete a course after having been registered for it twice.

Method of Assessment
FMP10.1 Satisfactory performance of the duly performed certificate (DP) requirements applies to all courses. A student gains entry to final assessment by satisfactory performance of the duly performed (DP) requirements. A student may be refused permission (DPR) to sit for the examination or review if he or she fails to satisfy the Senate that he or she has satisfactorily attended and duly performed the required work set in the conditions for the award of a DP certificate.

FMP10.2 A DP certificate may be withheld unless: all parts of each studio work project, tutorial or other assignment are completed to an acceptable standard and submitted for assessment at the stipulated times; there is satisfactory attendance (minimum of 80%), and a generally satisfactory participation in all sections of the course.

FMP10.3 Assessment by formal examination may be by means of a written or oral examination or term paper. An external examiner is appointed for each course assessed by examination.

Publication
FMP11.1 When presenting his or her minor dissertation the candidate shall by so doing grant a free licence to the University to publish it in whole or part at any time and in any manner or format that the University deems fit.

FMP11.2 No publication may, without the prior permission of the University, contain a statement that the published material was or is to be submitted in part or in full for this degree.

Award of the Degree with Distinction
FMP12.1 The degree may be awarded with distinction if the candidate obtains an average of at least 75% for all coursework and the examiners recommend that the 60 credit dissertation be awarded with distinction.

FMP12.2 The University does not undertake to reach a decision on the award of the degree by any specific date.

Master of Philosophy specialising in Transport Studies
(NOTE: These rules must be read with the general rules for Master’s degrees in Handbook 3 of this series.)

The Degree of MPhil specialising in Transport Studies is offered by the Faculty through the Department of Civil Engineering.
Minimum Admission Requirements
FM11 A person shall not be admitted as a candidate for the degree unless he or she is proficient in English and
(a) is a graduate of the University with a four-year bachelor level or honours degree and has achieved a level of numeracy satisfactory to the Senate*; or
(b) holds an approved three-year degree and (i) who has a minimum of five years’ experience relevant to the field in which he/she proposes to study, or (ii) who in addition to the standard programme requirement first completes a minimum of 144 credits of approved coursework and has achieved a level of numeracy satisfactory to Senate*; or
(c) has passed at any University or at any Institution recognised by Senate for the purpose, such examinations as are, in the opinion of Senate, equivalent to a degree in terms of (a) above and has achieved a level of numeracy satisfactory to Senate*; or
(d) has in any other manner attained a level of competence which, in the opinion of Senate, on the recommendation of the Faculty, is adequate for the purposes of admission as a candidate for the degree.

* NOTE:
(i) a first year (one semester) University course in Mathematics (pure or applied) or Statistics
(ii) Mathematics at Senior Certificate level with level 4 or better, or equivalent; or
(iii) applicants without the required level of numeracy specified in (i) and (ii) above will be required to demonstrate a satisfactory level of numeracy in a test.

Selection
FM12 Selection is based on an applicant's academic record and experience.

Duration
FM13 A candidate must be registered for the degree for at least two academic years.

Registration Requirements
FM14.1 Subject to the provisions of the rule on Readmission, below, a candidate must register annually unless granted leave of absence by Senate.

FM14.2 A new candidate must register by no later than the date on which his or her first course starts.

FM14.3 A continuing candidate must reregister by not later than 28 February.

Minimum Number of Course Modules
FM15 A candidate must register for at least two course modules, other than the 120-credit dissertation or the 60-credit minor dissertation, per year, except where only one course module is required to complete the degree.

Obtaining the Degree
FM16.1 A candidate may obtain the degree in one of the following ways:
(a) by completing advanced coursework (as prescribed) of a minimum value of 120 credits and a research report on the subject of a minor dissertation of a minimum value of 60 credits; or
(b) by completing advanced study by coursework of a minimum value of 60 credits and a dissertation (120 credits); or
(c) by completing a dissertation (180 credits).

Courses Completed at this or another University/Institution

FM17.1 For the purpose of granting credit for and/or exemption from a course prescribed as a curriculum requirement, the Senate may recognise a course or courses completed at this or another university or institution recognised for the purpose, provided that (i) such courses have not been counted for a qualification at the University or at any other institution and (ii) at least half the courses prescribed for the Degree shall be attended and passed at the University and (iii) the total period of attendance shall not be less than one year.

FM17.2 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities, shall not be carried forward for credit except by special permission of Senate.

Examination and Ethics Clearance

FM18.1 A candidate shall complete
(a) prescribed courses to the value of 60 credits and a dissertation (120 credits), or
(b) prescribed courses to the value of 120 credits and a research report on the subject of the minor dissertation to a value of 60 credits, or
(c) a dissertation to the value of 180 credits.

FM18.2 A candidate shall not be permitted to submit his/her dissertation for examination more than twice.

FM18.3 A candidate may be required to present him or herself for an oral examination on the dissertation, research report, or an essay assignment.

FM18.4 No dissertation or research report involving human (or animal) subjects, where ethics clearance has not been obtained beforehand, will be examined.

Readmission

FM19.1 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree, fails to complete courses of a value of not less than 50% of the total credits for which he or she is registered in the year concerned (or if he or she fails to make progress with his or her dissertation to the satisfaction of Senate).

FM19.2 A candidate who is required by the Faculty Examination Committee to correct or revise his or her research dissertation shall complete the corrections/revisions within one year of the date of the Committee's decision, failing which he/she shall not be permitted to continue with or reregister for his/her degree without the special permission of Senate.

FM19.3 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree fails to complete a course after having been registered for it twice or, in the case of the minor dissertation, submits the dissertation and fails the examination.

Submission of Minor Dissertation

FM10.1 After consultation with the supervisor, a candidate shall submit his/her dissertation
via PeopleSoft for examination.

FMI10.2 No project report or part thereof which has previously been submitted for examination for any degree at any university shall be accepted for a Master’s degree in the Faculty of Engineering & the Built Environment.

Submission of Dissertation and Paper
FMI11.1 A candidate intending to submit a dissertation in the hope of the award of the degree in either June or December, must, in the year in which the dissertation is to be submitted, inform the Faculty Manager (Academic Administration) in writing of such intention by 15 February or 15 July respectively in the year in which the dissertation is to be submitted. The final date for receipt by the Faculty Manager (Academic Administration) of a Master's dissertation submitted in the hope of the award of the degree either in June or December is 31 March or 31 August respectively. This shall not apply in the case of a candidate who undertakes a structured programme of coursework to a value of 120 credits and a minor dissertation to a value of 60 credits.

FMI11.2 After consultation with the supervisor, a candidate shall submit two copies of his/her dissertation in temporary bindings, one unbound copy and one copy on CD ROM in specified digital format to the Faculty Manager, (Academic Administration). Where more than two examiners are appointed a candidate may be required to submit an appropriate number of additional copies in temporary bindings.

FMI11.3 The candidate shall submit a summary of the key aspects of the dissertation, presented in the form of a paper which is, potentially, of publishable standard, approved by the supervisor. The final date for receipt of the paper by the Faculty Office shall be 30 April in the case of a candidate who submits a dissertation in hope of the award of the degree in June or 31 October in the case of a candidate who submits a dissertation in hope of the award of the degree in December. Note: The Paper requirement is intended to develop a candidate's skills in academic communication through exposure to the discipline of preparing a scholarly, succinct overview of the subject of the research topic, with due attention to structure, detail, clarity of expression and referencing.

FMI11.4 No dissertation or part thereof which has previously been submitted for examination for any degree at any university shall be accepted for a Master’s degree in the Faculty of Engineering & the Built Environment.

Publication
FMI12.1 When presenting his or her research report the candidate shall by so doing grant a free licence to the University to publish it in whole or part at any time and in any manner or format that the University deems fit.

FMI12.2 No publication may, without the prior permission of the University, contain a statement that the published material was or is to be submitted in part or in full for this degree.

Award of the Degree with Distinction
FMI13.1 The degree is awarded with distinction (refer to FMH12.1).

FMI13.2 The University does not undertake to reach a decision on the award of the degree by any specific date.
Master of Philosophy specialising in Urban Infrastructure Design and Management

(The programme is closed to new applicants. Students currently registered for the programme will be permitted to continue provided they will have completed their coursework requirement by March 2017, and are registered for their dissertation / minor dissertation)

(Note: These rules must be read with the general rules for Master’s degrees in Handbook 3 of this series.)

This programme is offered by the Faculty through the Department of Civil Engineering.

Minimum Admission Requirements

FMJ1 A person shall not be admitted as a candidate for the degree unless he or she is proficient in English and

(a) is a graduate of the University with a four-year bachelor level or honours degree in a field related to the built environment; or
(b) holds an approved three-year degree and (i) who has a minimum of five years’ experience relevant to the field in which he/she proposes to study, or (ii) who in addition to the standard programme requirement first completes a minimum of 144 credits of approved coursework; or
(c) has passed at any University or at any Institution recognised by Senate for the purpose, such examinations as are, in the opinion of Senate, equivalent to a degree in terms of (a) above; or
(d) has in any other manner attained a level of competence which, in the opinion of Senate, on the recommendation of the Faculty, is adequate for the purposes of admission as a candidate for the degree.

Selection

FMJ2 Selection is based on an applicant's academic record and experience.

Duration

FMJ3 A candidate must be registered for the degree for at least two academic years.

Registration Requirements

FMJ4.1 A candidate must register or reregister by not later than the end of Registration Week if taking first semester courses or, if any of the courses begins earlier, by not later than the date on which the first course starts.

FMJ4.2 A candidate must register or reregister by not later than 28 February if taking only second semester courses.

FMJ4.3 Except with the permission of the Senate, a candidate may not withdraw from a course which he or she is repeating.

FMJ4.4 A candidate, other than one registering for the first time for the degree must reregister by not later than 28 February if registering only for a dissertation. A candidate who is registering for the degree for the first time and, only for a dissertation, may register at any time during the year.
Obtaining the Degree

FMJ6 A candidate may obtain the degree in one of the following ways:

(a) by completing advanced coursework (as prescribed) of a minimum value of 120 credits and a minor dissertation of a minimum value of 60 credits; or

(b) by completing advanced study by coursework of a minimum value of 60 credits and a dissertation (120 credits)

Courses Completed at this or another University/Institution

FMJ7.1 For the purpose of granting credit for and/or exemption from a course prescribed as a curriculum requirement, the Senate may recognise a course or courses completed at this or another university or institution recognised for the purpose, provided that (i) such courses have not been counted for a qualification at the University or at any other institution and (ii) at least half the courses prescribed for the Degree shall be attended and passed at the University and (iii) the total period of attendance shall not be less than one year.

FMJ7.2 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities, shall not be carried forward for credit except by special permission of Senate.

Examination and Ethics Clearance

FMJ8.1 A candidate shall complete

(a) prescribed courses to the value of 60 credits and a dissertation (120 credits), or

(b) prescribed courses to the value of 120 credits and a research report on the subject of the minor dissertation to a value of 60 credits.

FMJ8.2 A candidate shall complete

(a) prescribed courses to the value of 60 credits and a dissertation (120 credits), or

(b) prescribed courses to the value of 120 credits and a research report on the subject of the minor dissertation to a value of 60 credits.

FMJ8.3 A candidate may be required to present himself or herself for an oral examination on the subject of the minor dissertation.

FMJ8.4 No dissertation involving human (or animal) subjects, where ethics clearance has not been obtained beforehand, will be examined.

Progress Report

FMJ9 A candidate shall submit a written report to the supervisor by 31 July each year, setting out, briefly, the progress made during the preceding twelve months or, if the period of registration is less than twelve months, the period that is relevant.

Readmission

FMJ10.1 Except by permission of the Senate, a candidate may not renew his or her registration if he or she fails to complete their core coursework by March 2017.

FMJ10.2 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree fails to complete a course after having been registered for it twice, or in the case of the minor dissertation, submits the dissertation and fails the examination.
Submission of Minor Dissertation
FMJ11.1 A candidate intending to submit a dissertation in the hope of the completion of the requirements for the award of the degree in either June or December, must, in the year in which the dissertation is to be submitted, inform the supervisor in writing of such intention by 15 February or 15 July respectively in the year in which the dissertation is to be submitted. The final date for receipt of the minor dissertation submitted in the hope of the award of the degree either in June or December is 30 March or 31 August respectively.

FMJ11.2 After consultation with the supervisor, a candidate shall submit his/her dissertation via PeopleSoft for examination.

FMJ11.3 No minor dissertation or part thereof which has previously been submitted for examination for any degree at any university shall be accepted for a Master’s degree in the Faculty of Engineering & the Built Environment.

Publication
FMJ12.1 When presenting his or her minor dissertation the candidate shall by so doing grant a free licence to the University to publish it in whole or part at any time and in any manner or format that the University deems fit.

FMJ12.2 No publication may, without the prior permission of the University, contain a statement that the published material was or is to be submitted in part or in full for this degree.

Award of the Degree with Distinction
FMJ13.1 The degree may be awarded with distinction if the candidate obtains an average of at least 75% for all coursework and the examiners all recommend that the 60 credit dissertation be awarded with distinction.

FMJ13.2 The University does not undertake to reach a decision on the award of the degree by any specific date.

Master of Science in Applied Science
NOTE: There has been no new intake of candidates for this Degree from 2007 as it is being discontinued. Candidates registered prior to 2007 will have the option of continuing or registering for the Degree of Master of Science in Engineering. From 2007 candidates, will be registered for the Degree of Master of Science in Engineering. Candidates who are continuing should refer to the Degree rules in the 2006 edition of this Handbook. A copy is available from the Faculty Office.

Master of Science in Construction Economics and Management
(NOTE: These rules must be read with the general rules for Master’s degrees in Handbook 3 of this series.)

The Degree of MSc(Const. Econ. & Mgmt.) is offered by the Faculty through the Department of Construction Economics & Management. The Department intends developing a new programme to offer for this Degree. There has been no new intake of candidates from 2007. Candidates registered prior to 2007 must consult the Degree Rules in the 2006 Faculty Handbook. A copy is available from the Faculty Office.

Master of Science in Engineering
(NOTE: These rules must be read with the general rules for Master’s degrees in Handbook 3 of this series.)
The Degree of MSc(Eng) is offered by the Faculty through the Departments of Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering; the School of Architecture, Planning and Geomatics (Geomatics Division); and through the Energy Research Centre.

Minimum Admission Requirements
FMM1 A person shall not be admitted as a candidate for the degree unless he or she is proficient in English and
(a) is a graduate of the Faculty or of an engineering or geomatics programme of any other university recognized for the purpose; or
(b) holds an appropriate BSc(Hons) degree; or
(c) holds an approved three-year degree and (i) who has a minimum of five years’ experience relevant to the field in which he/she proposes to study, or (ii) who in addition to the standard programme requirement first completes a minimum of 144 credits of approved coursework; or
(d) has passed at any university or institution recognized for the purpose, such examinations as are, in the opinion of the Senate, equivalent to the examinations prescribed for the degree of BSc(Eng) or BSc(Geomatics) at the University; or
(e) has in any other manner attained a level of competence which in the opinion of Senate on the recommendation of the Faculty, is adequate for the purpose of admission as a candidate for the degree.

Selection
FMM2 Selection is based on an applicant's academic record and the availability of a suitable supervisor. Submission of a 100 word statement of research interest and a letter of motivation are required. Submission of a satisfactory research proposal may be required.

Duration
FMM3 The degree programme shall extend over not less than one year.

Registration Requirements
FMM4.1 Subject to the provisions of the rule on Readmission, below, a candidate must register annually unless granted leave of absence by Senate.

FMM4.2 A candidate must register or reregister by not later than the end of Registration Week if taking first semester courses or, if any of the courses begins earlier, by not later than the date on which the first course starts.

FMM4.3 A candidate must register or reregister by not later than 28 February if taking only second semester courses.

FMM4.4 A candidate, other than one registering for the first time for the degree must reregister by not later than 28 February if registering only for the dissertation. A candidate who is registering for the degree for the first time and, only for the dissertation, may register at any time during the year.

Supervision
FMM5 A candidate shall work under the guidance of a supervisor appointed by Senate and shall typically be required to attend at the University for a minimum period of at least one month per annum for supervision purposes for as long as he/she continues to be a candidate for the degree.
Obtaining the Degree

FMM6.1 A candidate may obtain the degree in one of the following ways:

(i) by completing a dissertation (180 credits) which may incorporate any or all of the following:
 • design of all or part of an engineering project to a specification involving advanced concepts and theoretical principles;
 • a research project of a theoretical and/or practical nature on an advanced topic belonging to the Engineering Sciences;
 • a critical review of a specified topic based upon a comprehensive search of the literature or available data, pertinent to an advanced topic belonging to the Engineering Sciences;
 • development of an item of equipment or a technique involving novel features or advanced design; and
 • any other study acceptable to the Faculty; or

(ii) by completing advanced study by coursework (as prescribed) of a minimum value of 60 credits (some programmes require more) and a dissertation (120 credits) which may incorporate any or all of the elements referred to in sub-paragraph (i) above.

FMM6.2 The candidate's supervisor shall submit written evidence to the Faculty's Examinations Committee that the candidate has, with the approval of the supervisor, submitted a paper for presentation at a conference or for publication in a journal recognised by Senate.

Courses Completed at this or another University/Institution

FMM7.1 For the purpose of granting credit for and/or exemption from a course prescribed as a curriculum requirement, the Senate may recognise a course or courses completed at this or another university or institution recognised for the purpose, provided that (i) such courses have not been counted for a qualification at the University or at any other institution and (ii) at least half the courses prescribed for the Degree shall be attended and passed at the University and (iii) the total period of attendance shall not be less than one year.

FMM7.2 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities, shall not be carried forward for credit except by special permission of Senate.

Examination and Ethics Clearance

FMM8.1 A candidate for the degree shall complete

(a) a dissertation (180 credits) on the subject of the research project indicating an advanced study of applications, methods or theories, in some branch of engineering or geomatics; or,

(b) if proceeding by research and coursework, prescribed courses of a minimum value of 60 credits (some programmes may require more) and a dissertation on the subject of the research project, (to the value of 120 credits).

FMM8.2 A candidate may be required to attend an oral examination on the subject of the dissertation or technical report.

FMM8.3 A candidate shall not be permitted to submit his/her dissertation for examination more than twice.

FMM8.4 No dissertation involving human (or animal) subjects, where ethics clearance has
not been obtained beforehand, will be examined.

Progress Report
FMM9 A candidate shall submit a written report to the supervisor by 31 July each year, setting out, briefly, the progress made during the preceding twelve months or, if the period of registration is less than twelve months, the period that is relevant.

Readmission
FMM10.1 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree, fails to complete courses of a value of not less than 50% of the total credits for which he or she is registered in the year concerned (or if he or she fails to make progress with his or her dissertation to the satisfaction of Senate).

FMM10.2 A candidate who is required by the Faculty Examination Committee to correct or revise his or her research dissertation shall complete the corrections/revisions within one year of the date of the Committee's decision, failing which he/she shall not be permitted to continue with or reregister for his/her degree without the special permission of Senate.

Submission of Dissertation and Paper
FMM11.1 A candidate intending to submit a dissertation in the hope of the award of the degree in either June or December, must, in the year in which the dissertation is to be submitted, inform the Faculty Manager (Academic Administration) in writing of such intention by 15 February or 15 July respectively in the year in which the dissertation is to be submitted. The final date for receipt by the Faculty Manager (Academic Administration) of a Master's dissertation submitted in the hope of the award of the degree either in June or December is 31 March or 31 August respectively.

FMM11.2 After consultation with the supervisor, a candidate shall submit his/her dissertation via PeopleSoft for examination.

FMM11.3 The candidate shall submit a summary of the key aspects of the dissertation, presented in the form of a paper which is, potentially, of publishable standard, approved by the supervisor. The final date for receipt of the paper by the Faculty Office shall be 30 April in the case of a candidate who submits a dissertation in hope of the award of the degree in June or 31 October in the case of a candidate who submits a dissertation in hope of the award of the degree in December. Note: The Paper requirement is intended to develop a candidate's skills in academic communication through exposure to the discipline of preparing a scholarly, succinct overview of the subject of the research topic, with due attention to structure, detail, clarity of expression and referencing.

FMM11.4 No dissertation or part thereof which has previously been submitted for examination for any degree at any university shall be accepted for a Master’s degree in the Faculty of Engineering & the Built Environment.

Publication
FMM12.1 When presenting his or her dissertation the candidate shall by so doing grant a free licence to the University to publish it in whole or part at any time and in any manner or format that the University deems fit.

FMM12.2 No publication may, without the prior permission of the University, contain a
statement that the published material was or is to be submitted in part or in full for this degree.

Award of the Degree with Distinction

FMM13.1 A distinction is awarded as follows for the Master of Science:

The degree may be awarded with distinction if the candidate obtains an average of at least 75% for all coursework; and a recommendation from both external examiners that the 120 credit dissertation be awarded with distinction; or the dissertation may be awarded with distinction if the candidate obtains an average of at least 50-74% for all coursework; and a recommendation from both external examiners that the 120 credit dissertation be awarded with distinction.

The degree may be awarded with distinction if both external examiners recommend that the 180 credit dissertation be awarded with distinction.

FMM13.2 The University does not undertake to reach a decision on the award of the degree by any specific date.

Upgrading to PhD

FMM14.1 The Senate may on the recommendation of the Faculty and the candidate's supervisor upgrade a candidate's registration to PhD on the grounds of the quality and development of the candidate's work.

FMM14.2 Except with the permission of the Senate, a candidate may not withdraw from a course which he or she is repeating.

Master of Science in Project Management

(NOTE: These rules must be read with the general rules for Master’s degrees in Handbook 3 of this series.)

The Degree of MSc in Project Management is offered by the Faculty through the Department of Construction Economics & Management.

Minimum Admission Requirements

FMM1 A person shall not be admitted as a candidate for the degree unless he or she is proficient in English and

(a)	is a graduate of the University with a bachelor’s degree of a minimum duration of four years, or, an honours degree; or
(b)	holds an approved three-year degree and (i) who has a minimum of five years of senior managerial experience relevant to the field in which he/she proposes to study, or (ii) who in addition to the standard programme requirement first completes a minimum of 144 credits of approved coursework; or
(c)	has passed at any university or at any institution recognised by Senate for the purpose, such examinations as are, in the opinion of Senate, equivalent to a degree in terms of (a) above; or
(d)	has in any other manner attained a level of competence which, in the opinion of Senate, on the recommendation of the Faculty, is adequate for the purposes of admission as a candidate for the degree.

Selection

FMM2 Selection is based on an applicant's academic record and experience. Completion of the four year bachelor’s or honours degree with a weighted average of at least 65%
(supplementary results excluded) is the normal academic prerequisite for admission. Applicants may be required to attend an interview and/or write an entrance examination.

Duration

FMN3 A candidate must be registered for the degree for at least two academic years.

Registration Requirements

FMN4.1 Subject to the provisions of the rule on Readmission, below, a candidate must register annually unless granted leave of absence by Senate.

FMN4.2 A candidate must register or reregister by not later than the end of Registration Week if taking first semester courses or, if any of the courses begin earlier, by not later than the date on which the first course starts.

FMN4.3 A candidate must register or reregister by not later than 28 February if taking only second semester courses.

FMN4.4 Except with the permission of the Senate, a candidate may not withdraw from a course which he or she is repeating.

FMN4.5 A candidate, other than one registering for the first time for the degree must reregister by not later than 28 February if registering only for a project.

Minimum Number of Courses

FMN5 A candidate must register for at least two courses, other than the research project, per year except where only one course module is required to complete the degree.

Obtaining the Degree

FMN6 A candidate may obtain the degree by completing advanced study by coursework (as prescribed) of a minimum value of 140 credits and a research report on the subject of a minor dissertation of a minimum value of 60 credits.

Courses Completed at this or another University/Institution

FMN7.1 For the purpose of granting credit for and/or exemption from a course prescribed as a curriculum requirement, the Senate may recognise a course or courses completed at this or another university or institution recognised for the purpose, provided that (i) such courses have not been counted for a qualification at the University or at any other institution and (ii) at least half the courses prescribed for the Degree shall be attended and passed at the University and (iii) the total period of attendance shall not be less than one year.

FMN7.2 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities, shall not be carried forward for credit except by special permission of Senate.

Examination and Ethics Clearance

FMN8.1 A candidate shall complete prescribed courses to the value of 140 credits and a research report on the subject of the minor dissertation to a value of 60 credits.

FMN8.2 A candidate who fails the Research Report examination shall not be permitted to reregister for the Research Report.

FMN8.3 A candidate may be required to present him or herself for an oral examination on
the research report.

FMN8.4 No research report involving human (or animal) subjects, where ethics clearance has not been obtained beforehand, will be examined.

FMN8.5 A candidate intending to submit a 60 credit dissertation in the hope of the award of the degree in either June or December, must, in the year in which the dissertation is to be submitted, inform the HOD in writing of such intention by 15 February or 15 July respectively in the year in which the dissertation is to be submitted. The final date for receipt of a Master's dissertation submitted in the hope of the award of the degree either in June or December is 31 March or 31 August respectively.

Progress Report

FMN9 A candidate shall submit a written report to the Head of Department by 31 July each year, setting out, briefly, the progress made during the preceding twelve months or, if the period of registration is less than twelve months, the period that is relevant.

Readmission

FMN10.1 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree, fails to complete courses of a value of not less than 50% of the total credits for which he or she is registered in the year concerned (or if he or she fails to make progress with his or her research project to the satisfaction of Senate).

FMN10.2 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree fails to complete a course after having been registered for it twice, or in the case of the Research Report, submits the Report and fails the examination.

Award of the Degree

FMN11.1 The degree may be awarded with distinction if the candidate obtains an average of at least 75% for all coursework and the examiners all recommend that the 60 credit dissertation be awarded with distinction.

FMN11.2 The University does not undertake to reach a decision on the award of the degree by any specific date.

Master of Science in Property Studies

(NOTE: These rules must be read with the general rules for Master's degrees in Handbook 3 of this series.)

The Degree of MSc in Property Studies is offered by the Faculty through the Department of Construction Economics & Management.

Minimum Admission Requirements

FM01 A person shall not be admitted as a candidate for the degree unless he or she is proficient in English and

(a) is a graduate of the University with a bachelor’s degree of a minimum duration of four year’s, or an honours degree, in a field related to the built environment; or

(b) holds an approved three-year degree and (i) who has a minimum of five years of senior managerial experience relevant to the field in which he/she
proposes to study, or (ii) who in addition to the standard programme requirement first completes a minimum of 144 credits of approved coursework; or (c) has passed at any university or at any institution recognised by Senate for the purpose, such examinations as are, in the opinion of Senate, equivalent to a degree in terms of (a) above; or (d) has in any other manner attained a level of competence which, in the opinion of Senate, on the recommendation of the Faculty, is adequate for the purposes of admission as a candidate for the degree.

Selection
FMO2 Selection is based on an applicant's academic record and experience. Completion of the four year bachelor's or honours degree with a weighted average of at least 65% (supplementary results excluded) is the normal academic prerequisite for admission. Applicants may be required to attend an interview and/or write an entrance examination.

Duration
FMO3 A candidate must be registered for the degree for at least two academic years.

Registration Requirements
FMO4.1 Subject to the provisions of the rules on Readmission, below, a candidate must register annually unless granted leave of absence by Senate.

FMO4.2 A candidate must register or reregister by not later than the end of Registration Week if taking first semester courses or, if any of the courses begins earlier, by not later than the date on which the first course starts.

FMO4.3 A candidate must register or reregister by not later than 28 February if taking only second semester courses.

FMO4.4 Except with the permission of the Senate, a candidate may not withdraw from a course which he or she is repeating.

FMO4.5 A candidate, other than one registering for the first time for the degree must reregister by not later than 28 February if registering only for a project.

Minimum Number of Courses
FMO5 A candidate must register for at least two courses, other than the research report, per year except where only one course module is required to complete the degree.

Obtaining the Degree
FMO6 A candidate may obtain the degree by completing advanced study by coursework (as prescribed) of a minimum value of 140 credits and a research report on the subject of a minor dissertation of a minimum value of 60 credits.

Courses Completed at this or another University/Institution
FMO7.1 For the purpose of granting credit for and/or exemption from a course prescribed as a curriculum requirement, the Senate may recognise a course or courses completed at this or another university or institution recognised for the purpose, provided that (i) such courses have not been counted for a qualification at the University or at any other institution and (ii) at least half the courses prescribed for the Degree shall be attended and passed at the University and (iii) the total period of attendance shall not be less than one year.
FMO7.2 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities, shall not be carried forward for credit except by special permission of Senate.

Examination and Ethics Clearance

FMO8.1 A candidate shall complete prescribed courses to the value of 140 credits and a research report on the subject of the minor dissertation to a value of 60 credits.

FMO8.2 A candidate who fails the Research Report examination shall not be permitted to reregister for the Research Report.

FMO8.3 A candidate may be required to present him or herself for an oral examination on the research report.

FMO8.4 No research report involving human (or animal) subjects, where ethics clearance has not been obtained beforehand, will be examined.

FMO8.5 A candidate intending to submit a 60 credit dissertation in the hope of the award of the degree in either June or December, must, in the year in which the dissertation is to be submitted, inform the Hod in writing of such intention by 15 February or 15 July respectively in the year in which the dissertation is to be submitted. The final date for receipt of a Master's dissertation submitted in the hope of the award of the degree either in June or December is 31 March or 31 August respectively.

Progress Report

FMO9 A candidate shall submit a written report to the Head of Department by 31 July each year, setting out, briefly, the progress made during the preceding twelve months or, if the period of registration is less than twelve months, the period that is relevant.

Readmission

FMO10.1 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree, fails to complete courses of a value of not less than 50% of the total credits for which he or she is registered in the year concerned (or if he or she fails to make progress with his or her research project to the satisfaction of Senate).

FMO10.2 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree fails to complete a course after having been registered for it twice or, in the case of the Research Report, submits the Report and fails the examination.

Award of the Degree with Distinction

FMO11.1 The degree may be awarded with distinction if the candidate obtains an average of at least 75% for all coursework and the examiners all recommend that the 60 credit dissertation be awarded with distinction.

FMO11.2 The University does not undertake to reach a decision on the award of the degree by any specific date.
Master of Transport Studies
(Note: These rules must be read with the general rules for Master’s degrees in Handbook 3 of this series.)

The Degree of Master of Transport Studies is offered by the Faculty through the Department of Civil Engineering

Minimum Admission Requirements
FMP1 A person shall not be admitted as a candidate for the degree unless he or she is proficient in English and
(a) is a graduate of the University with a four-year bachelor level or honours degree and has achieved a level of numeracy satisfactory to the Senate*; or
(b) holds an approved three-year degree and (i) who has a minimum of five years’ experience relevant to the field in which he/she proposes to study, or (ii) who in addition to the standard programme requirement first completes a minimum of 144 credits of approved coursework and has achieved a level of numeracy satisfactory to Senate*; or
(c) has passed at any University or at any Institution recognised by Senate for the purpose, such examinations as are, in the opinion of Senate, equivalent to a degree in terms of (a) above and has achieved a level of numeracy satisfactory to Senate*; or
(d) has in any other manner attained a level of competence which, in the opinion of Senate, on the recommendation of the Faculty, is adequate for the purposes of admission as a candidate for the degree.

*Note
(i) a first year (one semester) University course in Mathematics (pure or applied) or Statistics
(ii) Mathematics at National Senior Certificate level with a level 4 or better, or equivalent; or
(iii) applicants without the required level of numeracy specified in (i) and (ii) above will be required to demonstrate a satisfactory level of numeracy in a test.

Selection
FMP2 Selection is based on an applicant's academic record and experience.

Duration
FMP3 A candidate must be registered for the degree for at least one academic year.

Registration Requirements
FMP4.1 Subject to the provisions of the rules on Readmission, below, a candidate must register annually unless granted leave of absence by Senate.

FMP4.2 A new candidate must register by no later than the date on which his or her first course starts.

FMP4.3 A continuing candidate must reregister by not later than 28 February.

Minimum Number of Courses
FMP5 A candidate must register for at least three course modules (inclusive of the two research project modules) per year, except where only one course module is required to complete the degree.
Obtaining the Degree
FMP6 A candidate shall be required to complete advanced study by coursework (as prescribed) of a minimum value of 140 credits and research projects of a minimum value of 50 credits.

Courses Completed at this or another University/Institution
FMP7.1 For the purpose of granting credit for and/or exemption from a course prescribed as a curriculum requirement, the Senate may recognise a course or courses completed at this or another university or institution recognised for the purpose, provided that (i) such courses have not been counted for a qualification at the University or at any other institution and (ii) at least half the courses prescribed for the Degree shall be attended and passed at the University and (iii) the total period of attendance shall not be less than one year.

FMP7.2 Course credits of more than 10 years standing, whether obtained in this Faculty, other faculties or other universities, shall not be carried forward for credit except by special permission of Senate.

Examination and Ethics Clearance
FMP8.1 A candidate shall complete prescribed courses to the value of 140 credits and research reports to a value of 50 credits.

FMP8.2 A candidate shall not be permitted to submit his/her research project reports for examination more than twice.

FMP8.3 A candidate may be required to present him or herself for an oral examination on a research project report, or an essay assignment.

FMP8.4 No research report involving human (or animal) subjects, where ethics clearance has not been obtained beforehand, will be examined.

Readmission
FMP9.1 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree, fails to complete courses of a value of not less than 50% of the total credits for which he or she is registered in the year concerned (or if he or she fails to make progress with his or her dissertation to the satisfaction of Senate).

FMP9.2 Except by permission of the Senate, a candidate may not renew his or her registration if he or she, in the courses recognised for the degree fails to complete a course after having been registered for it twice or, in the case of the research project reports, submits a report for re-examination and fails the examination.

Award of the Degree with Distinction
FMP11.1 The degree may be awarded with distinction if the candidate obtains an average of at least 75% for all coursework and an average of at least 75% for all research project reports.

FMP11.2 The University does not undertake to reach a decision on the award of the degree by any specific date.
The degree of Doctor of Architecture is the highest and most prestigious degree awarded in the fields of architecture, planning, urban design and construction economics and management by the University of Cape Town. It is awarded rarely, for substantial, original and scholarly contributions to knowledge, which would normally be the result of work carried out, built and/or published over a period of years.

Admission

FDA1 The degree of Doctor of Architecture may be conferred upon:

(a) holders of Bachelor degrees in Architecture, and Honours degrees in Property Studies, Construction Management and Quantity Surveying of the University, of not less than five year’s standing;
(b) holders of Master’s degrees in City and Regional Planning or City Planning and Urban Design of the University, of not less than five year’s standing; or
(c) holders of equivalent degrees from other universities recognised by the Senate for the purpose, of not less than five year’s standing, provided a close and on-going association with this University can be demonstrated.

Application for Admission

FDA2.1 Before a person may be registered as a candidate for the Degree he or she must submit a provisional application for admission, in confidence, to the Dean. The provisional application shall be accompanied by a curriculum vitae, six copies of the work to be submitted for the degree and also six copies of a brief summary of its contents and a statement as to how the work contributes to learning. A person submitting a provisional application shall also submit a written statement affirming

(a) that the work submitted is the original work of the applicant as sole author, and/or indicating the extent to which joint work is the original work of the applicant;
(b) that the work submitted has not been accepted for a degree at this or any other university.

FDA2.2 Senate may decide, having received the advice of a Committee of Assessors appointed for the purpose, either to accept or to refuse the application. If accepted, the Dean shall invite the applicant to formally apply and register as a candidate and examination of the work will proceed. If refused, the Dean shall inform the candidate in confidence and return the submitted material.

Requirements for the Award of the Degree

FDA3.1 The work submitted shall comprise documentation of built and/or published work which shall constitute a substantial, original and important contribution to learning in the field of either architecture, planning, urban design or construction economics and management. A candidate may, in addition, submit any supporting collateral evidence. The work must be satisfactory in arrangement and expression.

FDA3.2 No work will be accepted which has been accepted by another university for the purpose of obtaining a degree.

FDA3.3 If, at the date of its presentation, any portion of the work submitted has not been
published, or is not being published, in a manner satisfactory to the University, the candidate must grant the University in writing a free licence to reproduce the work in whole or in part for the purpose of research. The University may be prepared to waive the right so granted if the candidate subsequently makes arrangements for publication in a manner satisfactory to the University.

FDA3.4 The examination shall consist primarily of an assessment of the published work submitted by the candidate, but a candidate shall, if required by Senate, attend for written or oral examination on the subject of the work presented, and on any work undertaken under supervision.

Doctor of Science in Engineering

NOTE: Details of the preliminary screening, registration and examination procedures are obtainable on request from the Faculty Manager (Academic Administration).

These rules must be read with the general rules for degrees and diplomas in Handbook 3 of this series.

The Degree of Doctor of Science in Engineering is a senior doctorate and is awarded for substantial and original contributions to knowledge in one or more fields of Engineering or Geomatics. Such contributions will normally be the result of work carried out and published over a period of years, and will normally be such as to have established the candidate's position as an authority in the field on the subject of the research project.

Admission

FDC1 The degree of Doctor of Science in Engineering may be conferred upon:

(a) bachelors of science in engineering or geomatics of the University of not less than four year's standing: and

(b) graduates in engineering or geomatics of any other university recognised by Senate for the purpose of not less than five year's standing.

Application for Admission

FDC2.1 Before a person may be registered as a candidate for the degree he/she must submit a provisional application for admission, in confidence, to the Dean. The provisional application shall be accompanied by a *curriculum vitae*, six copies of the work to be submitted for the degree, and a detailed synopsis of the contents of the work including a statement as to how the work contributes to learning. A person applying for admission shall also submit written statements affirming

(i) that the work submitted is the original work of the applicant as sole author, and/or indicating the extent to which joint work is the original work of the applicant;

(ii) that the work submitted has not been accepted for a degree at this or any other university.

FDC2.2 Senate may decide, having received the advice of a Committee of Assessors appointed for the purpose, either to accept or to refuse the application. If accepted, the Dean shall invite the applicant to formally apply and register as a candidate. If refused, the Dean shall inform the candidate in confidence and return the submitted material.

Requirements for the Award of the Degree

FDC3.1 The work submitted shall comprise published papers or other documents which shall constitute a substantial, original and important contribution to learning in one
or more fields of engineering or geomatics. A candidate may submit other published and unpublished work as collateral testimony of fitness for the degree.

FDC3.2 No work will be accepted which has been accepted by another university for the purpose of obtaining a degree.

FDC3.3 The examination shall consist primarily of an assessment of the published work submitted by the candidate, but a candidate shall, if required by Senate, attend for written or oral examination on the subject of the work presented, and on any work undertaken under supervision.

Doctor of Philosophy

<table>
<thead>
<tr>
<th>Qualification</th>
<th>Specialisation</th>
<th>Plan Code</th>
<th>ProgCode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor of Philosophy</td>
<td>Architecture</td>
<td>APG01</td>
<td>ED001</td>
</tr>
<tr>
<td></td>
<td>Architecture & Planning</td>
<td>APG02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geomatics</td>
<td>APG08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering</td>
<td>CHE01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Education</td>
<td>Various</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Civil Engineering</td>
<td>CIV01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construction Economics & Management</td>
<td>CON01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering</td>
<td>EEE01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering</td>
<td>MEC01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Management</td>
<td>MEC02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materials Engineering</td>
<td>MEC03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy Studies</td>
<td>MEC06</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The rules for the degree of Doctor of Philosophy (PhD) are published in Handbook No.3 General Rules and Policy. Prospective candidates should consult the Head of the Department in which they propose to study/carry out their research, before making formal application. PhD candidates are asked to note that there is a limitation of 80,000 words for PhD theses. The special approval of the Dean is required if this limit is to be exceeded. Applications to exceed the limit must be addressed to the Dean and must have the endorsement of the supervisor and the Head of Department concerned.
DEPARTMENTS IN THE FACULTY AND COURSES OFFERED

ARCHITECTURE, PLANNING AND GEOMATICS

The School offers the following Postgraduate Degree Programmes:

Architecture
Geomatics
Landscape Architecture
City and Regional Planning
Urban Design

The Architecture and Planning division of the School is situated in the Centlivres Building on the Upper Campus, fronting onto University Avenue. The Geomatics division is located on level 5 of the Menzies Building.

Staff

Professor and Director:
T Berlanda, Dipl Arch, USI, PhD (Arch & Design) Italy

Professors:
I Low, BArch Cape Town MArch(Urban Design) Penn PrArch MIArch CIA
E Pieterse, BA(Hons) UWC MA Development Studies ISS PhD LSE
V Watson, BA(Hons) Natal MCRP Cape Town AA Dip London PhD Witwatersrand MSAPI SACP

Emeritus Professors:
H Rüther, Dipl-Ing Bonn PhD Cape Town PrS(SA) FRSSAf FSAAE
F Todeschini, BArch Cape Town MCP MArch (Urban Design) Penn MIA MUDISA ArchSA
D Dewar BA(Hons) MURP PhD Cape Town TRP(SA) MSAPI BP Chair of Urban and Regional Planning

Associate Professors:
A Steenkamp, B.Arch Pret M.Arch Pret PhD Delft PrArch
N Coetzer, BArch Natal MArch Denver PhD London
N Odendaal, NDip(TRP) ML Sultan BA UNISA MTRP UND PhD Witwatersrand RTPI
JL Smit, BSoc(Surv) PhD Cape Town
JF Whittal, BSoc(Surv) MSc(Eng) Cape Town, PhD Calgary PrL(SA) MSAGI
T Winkler, BSoc(TRP) MUD Witwatersrand PhD British Columbia

Emeritus Associate Professor:
CL Merry, BSoc(Surv) Cape Town PhD New Brunswick FAIG

Senior Lecturers/Studio Master’s:
F Carter, BAS BArch MPhil Cape Town PrArch PRCPM MIA RIBA
M Fraschini, MSc(Arch) Milan PhD Arch and Urban Design Milan
K Fellingham, BArch (WITS), SM ArchS (MIT), PR Arch (SA), ARB (UK), RIBA (UK)
C Hindes, BLA Pret MLArch
F Isaacs, B.Arch Cape Town MIP Stuttgart
T Katzschner, BSc(Arch) MCRP Cape Town
M Louw, BArch Pretoria MPhil Stellenbosch PrArch(SA) MIArch
P Odera, B.Sc (Surveying) University of Nairobi; M.Sc. (Surveying) University of Nairobi; Ph.D. (Earth and Planetary Sciences) Kyoto University
J Raxworthy, Assoc Dip (Applied Science) TAFE BLA(Hons) MLA RMIT PhD Queensland
T Sanya, BArch Makerere MIP Stuttgart PhD Oslo
J Schabert, Dipl.Ing.(Univ.) Architect/ByAK
G Sithole, BSc Surveying(Hons) Zimbabwe MSc IGP ITC(NL) PhD TU Delft(NL) LSZ Zimbabwe
M Silverman, B.Arch Johannesburg MUD Johannesburg

Lecturers:
A Crowder, ND Arch (PTech) BTech (Applied Design) CPUT BArch UP MArts BTU-Cottbus
S Hull, BSc Surveying Kwazulu Natal MSc(Eng) Cape Town PGCE UNISA PrL(SA)
S Le Grange, BArch Cape Town M Urban Design UC Berkeley
SS Papanicolaou, BArch Cape Town, MPhil Cape Town
K Singh, BSc Land Surveying, MSc Land Surveying, Kwazulu Natal
S Spamer, BAS Cape Town, B.Arch Cape Town

Part-Time Lecturers:
R Cronwright, BA MC & RP MBA Cape Town TRP(SA) MSA/TRP
T Klitzner, BArch Cape Town MLA Penn

Principal Technical Officer:
J Coetzee, NHD (Building Tech)
D Matthee, NHD (Mechanical Eng.) ND (Surveying)

Chief Technical Officer:
M Wells

Departmental Manager:
J Meyer

Photographic Technician:
N Stanley

Administrative Officers:
M Joubert

Administrative Assistant:
H Martin

Senior Secretaries:
J Abrahams
N Pickover
M Waglay

Print Room Manager:
T Swarts

Departmental Assistant:
C Ohlson

Laboratory Assistant:
S Schroeder

Technical Assistant:
Postgraduate Programmes

Honours Programmes

Bachelor of Architectural Studies (Honours) [EH006APG01]

Associate Professor and Programme Convener:
N Coetzer, BArch Natal MArch Denver PhD London

An honours degree in architecture that provides students with advanced vocational and discipline specific knowledge, skills and competencies related to the history, theory, technology and practice of architecture. The course of study extends the base of knowledge of the student through graduate study with particular emphasis on architectural design. It is focused on developing creative and critical inquiry, reflective understanding and cultural, social and technical knowledge in preparation for self-motivated independent learning. The qualification introduces an honours degree within a succession of qualifications leading towards professional qualification in architecture. It is a prerequisite qualification for admission into the Master of Architecture (Professional).

Studio work Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG4042F</td>
<td>Architectural Design Studio I</td>
<td>48</td>
<td>8</td>
</tr>
<tr>
<td>APG4043S</td>
<td>Architectural Design Studio II</td>
<td>48</td>
<td>8</td>
</tr>
</tbody>
</table>

Non-Studio Courses

The following courses are compulsory:

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG4039F</td>
<td>Advanced History & Theory of Architecture</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4041S</td>
<td>Advanced Building Technology</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4044S</td>
<td>Professional Practice</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4048S</td>
<td>Architecture Research Method & Project</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

Elective core courses ... 24 8

Total credits ... 168

Elective Core Courses (select 24 credits)

Select two 12-credit elective for the First Semester from the following: (see note below)*

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG4021F</td>
<td>Urban Infrastructure</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4028F</td>
<td>Aspects of City Design</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4029F</td>
<td>Natural Systems</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG5025F</td>
<td>History and Theory of Architecture</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>APG4049F</td>
<td>Aspects of History & Theory I</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4056F</td>
<td>Aspects of History & Theory II</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

*Or any 12 credit course presented at honours level, approved by the Programme Convener.

*Note: APG4042F Architectural Design Studio I is a pre-requisite for APG4043S Architectural Design Studio II in the second semester.
Bachelor of City Planning Honours
[EH009APG03]

Associate Professor and Programme Convener:
N Odendaal, NDip(TRP) ML Sultan BA UNISA MTRP UND PhD Witwatersrand RTPI

The BCP(Hons) degree consist of either one year of full-time study or a two-year extended programme. The extended programme is not 'part-time' in the usual meaning of the term. Rather, it enables candidates to undertake the Honours degree first year of study over two years, by attending theory only in the first year and studio work only in the second year. The material covered in the one year full-time and the two-year extended programme is precisely the same. The curriculum comprises of courses in theory and project work. However, because a great deal of both project and theory work is self- or group-initiated, and is innovative in form, more than half of the content of the BCP(Hons) and MCRP degree programmes can be described as research related.

Projects are selected for both academic utility and professional relevance and are carried out by students under staff supervision. The studio is a vehicle for exploration into development and planning in real situations. The programmes require considerable field work in the Cape Town area and in some cases field trips to other parts of the country are arranged. Each project culminates in the submission of a document and the oral presentation of project work. Assessment is based on project products. Theory courses are concerned with procedural and substantive theory. Planning skills are imparted and honed throughout the duration of the programmes.

Studio work Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF</th>
<th>Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG4022F</td>
<td>Planning Project A</td>
<td>8</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>APG4026S</td>
<td>Planning Project B</td>
<td>8</td>
<td>32</td>
<td>8</td>
</tr>
</tbody>
</table>

Non-Studio Courses

The following courses are compulsory:

First Semester

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF</th>
<th>Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG4020F</td>
<td>Planning Theory & Practice</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>APG4021F</td>
<td>Urban Infrastructure</td>
<td>8</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4028F</td>
<td>Aspects of City Design</td>
<td>8</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4029F</td>
<td>Natural Systems</td>
<td>8</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4035F</td>
<td>Planning Techniques I</td>
<td>8</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF</th>
<th>Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG4023S</td>
<td>Urban Economic Development Processes</td>
<td>8</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4024S</td>
<td>Planning & Governmental Systems</td>
<td>8</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4025S</td>
<td>Regulatory & Legal Framework</td>
<td>5</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4038S</td>
<td>Planning Techniques II</td>
<td>8</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

Total credits: 168

BSc(Hons) in Geographical Information Systems
[EH001APG07]

Associate Professor and Programme Convener:
Jennifer Whittal, BSc(Surv) MSc(Eng) Cape Town, PhD Calgary PrL(SA)MSAGI

The curriculum of the BSc(Hons) in Geographic Information Systems programme is aimed at graduates intending to work in disciplines associated with the natural, geographical and computer
The degree is intended to equip graduates with the practical skills and theoretical knowledge they need to incorporate GIS techniques in their everyday work routine. A candidate shall complete approved courses of a value required to bring the total to a minimum of 144 credits and shall comply with all the prescribed curriculum requirements.

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG2018X</td>
<td>GIS Camp</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>APG3012S</td>
<td>Geomatics III</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>APG4050W</td>
<td>Geo-Informatics Project</td>
<td>40</td>
<td>8</td>
</tr>
<tr>
<td>APG4007F</td>
<td>Introductory GIS</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>APG4008S</td>
<td>Advanced GIS</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>APG4009F</td>
<td>Computing for GIS</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>APG4012S</td>
<td>Geomatics Management & Professionalism</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Total credits per year</td>
<td></td>
<td>158</td>
</tr>
</tbody>
</table>

Master's Programmes

Master of Architecture

[EM006APG01]

Professor and Programme Convener:

I Low, BArch Cape Town MArch(Urban Design) Penn PrArch MIA Arch CIA

The Master of Architecture degree may be awarded to a candidate who shall present a dissertation incorporating any or all of the following:

- a research project of a theoretical or practical nature;
- a critical review of a specified topic based upon a comprehensive search of literature or available data;
- design of all or part of an architectural project or group of projects to a specification involving advanced concepts and theoretical principles;
- design of all or part of an architectural project or group of projects to a specification involving advanced concepts and theoretical principles;
- any other study acceptable to the Faculty of Engineering and the Built Environment.

Master of Architecture (Professional)

[EM021APG01]

Associate Professor and Programme Convener:

N Coetzer, BArch Natal MArch Denver PhD London

A qualifying degree in architecture that provides students with the knowledge, values and skills to enter the profession of architecture and/or to pursue further qualifications in architecture or fields associated with the architectural profession and built environment. It is focused on developing independent critical enquiry in preparation for practice in a diverse and changing world. Students are given considerable freedom and support to develop a reflective, critical and speculative relationship to their work. The qualification introduces a master's degree within a succession of qualifications leading towards professional qualification in architecture. It is a prerequisite qualification for statutory registration as a Candidate Architect with the South African Council for the Architectural Profession (SACAP), in terms of the Architectural Professions Act 2000 (Act No 44 of 2000). To attain registration as Professional Architect, the candidate must complete a two-year period of practical experience in an architectural office and pass a registration exam set by SACAP.
NOTE: These rules must be read with the general rules for Master’s degrees in Handbook 3 of this series.

Design Dissertation - Year Course
Studio work Course
Number Course NQF Credits HEQSF Level
APG5079W Dissertation Design 120 9

Non-Studio Courses
Number Course NQF Credits HEQSF Level
APG5088Z Theory and Technology Studies 60 9

Total credits per year ... 180

Master of City and Regional Planning [em031apg03]
City and Regional Planning is a recognised profession under the Planning Professions Act of 2003. It is a designated scarce skill in terms of the South African Government’s Joint Initiative for Priority Skills Acquisition (JIPSA) as part of its accelerated economic growth programme. It responds to environmental, infrastructural and socio-economic priorities at national, provincial and local levels of governance.

The primary purpose of the Master’s degree is to build on the Bachelor of City Planning Honours by expanding the learners’ conceptual knowledge and skills to regional planning, to advanced environmental assessment, and to do in-depth research in the form of a 120 credit dissertation. It comprises theory courses, project work and a dissertation.

This is the degree necessary to enable professional qualification as a city and regional planner.

Master of City and Regional Planning
[EM031APG03]

Programme Convener:
N Odendaal, NDip(TRP) ML Sultan BA UNISA MTRP UND PhD Witwatersrand RTPI

This curriculum must be read together with the Degree Rules in the General Information section of this Handbook. Candidates for the MCRP degree are required to complete the core courses listed below, totaling 184 credits.

First semester
Number Course NQF Credits HEQSF Level
APG5020F Regional Planning Project 32 9
APG5023F Regional Planning Theory 20 9

Second semester
Number Course NQF Credits HEQSF Level
APG5024S Planning Techniques III 12 9
APG5051Z Dissertation MCRP 120 9
Total credits per year ... 184
Master of Urban Design
[EM030APG12]

Associate Professor and Programme Convener:
J Raxworthy, Assoc Dip (Applied Science) TAFE, BLA(Hons) RMIT, MLA (RMIT), PhD Queensland

This curriculum must be read together with the Degree Rules in the General Information section of this Handbook. Each student must complete all of the courses. (The curriculum may be taken over a period of two years by candidates in part-time employment.) For the completion of this degree students are required to complete a minimum of 156 credits at level 9 and 24 credits at level 8, as this degree consists of both level 8 and 9 courses.

First semester

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG5082F</td>
<td>Theory of Urban Design I</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>APG5083F</td>
<td>Urban Design Studio</td>
<td>48</td>
<td>9</td>
</tr>
<tr>
<td>APG4052F</td>
<td>Urban Design Representation</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG5084F</td>
<td>Research Methods for Urban Design</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>Approved Elective</td>
<td></td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

Second semester

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG5082S</td>
<td>Urban Design Theory II</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>APG5086S</td>
<td>Urban Design Research Project</td>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td>Total credits</td>
<td></td>
<td></td>
<td>184</td>
</tr>
</tbody>
</table>

*Elective Courses for the First Semester (select 12 credits)

Select one 12-credit elective for the First Semester from the following:

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG4021F</td>
<td>Urban Infrastructure</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4054F</td>
<td>Landscape Systems</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4020F</td>
<td>Planning Theory and Practice</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Or any 12-credit course at Honours or Masters level that has been approved by the MUD Programme Convenor</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Master of Landscape Architecture
[EM015APG06]

Senior Lecturer and Programme Convener:
J Raxworthy, Assoc Dip (Applied Science) TAFE, BLA(Hons) RMIT, MLA (RMIT), PhD Queensland

Studio work Courses

Studio work, the central activity of the degree programme, requires students to exercise considerable initiative and undertake research, and consumes up to two-thirds of the students time allocation to the Programme. Projects are selected for both academic and professional relevance and will start at the smaller scale and work steadily towards the comprehension of larger and larger natural and urban systems. Fieldwork is an indispensable component of each project and involves trips into Metropolitan Cape Town and selected parts of the Western Cape region. Each project culminates in
the submission of a document and an oral presentation. Assessment is based on a variety of project products and a Studio work examination held at the end of each semester.

Lecture courses
Lecture courses focus on imparting values, knowledge, and skills of relevance to landscape architecture. Landscape skills and techniques are developed progressively throughout the duration of the study programme. Theory courses are accompanied by extensive reading lists and students are expected to undertake extensive structured reading. The courses are assessed through term papers, practicals, seminars and other forms of examination.

This curriculum must be read together with the Degree Rules in the General Information section of this Handbook. Each student must complete all of the courses.

First Year: first semester

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG4028F</td>
<td>Aspects of City Design</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4054F</td>
<td>Landscape Systems</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>APG4031F</td>
<td>Landscape Representation</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4034F</td>
<td>Terrain Analysis</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4036F</td>
<td>Landscape Architecture Studio I</td>
<td>32</td>
<td>8</td>
</tr>
</tbody>
</table>

First Year: second semester

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG4025S</td>
<td>Regulatory & Legal Framework</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>APG4030S</td>
<td>History & Theory of Landscape Architecture</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4032S</td>
<td>Constructing Landscape Systems</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4033S</td>
<td>Landscape Techniques II</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>APG4037S</td>
<td>Landscape Architecture Studio II</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>APG4047S</td>
<td>Plants & Design</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>APG4055S</td>
<td>Environmental Planning and Management Processes</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Total first year credits .. 176

Second Year: first semester

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG5025F</td>
<td>Contemporary Theories of Landscape Architecture</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>APG5026F</td>
<td>Detail Landscape Design and Documentation</td>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td>APG5029F</td>
<td>Advanced Landscape Architecture Studio</td>
<td>32</td>
<td>9</td>
</tr>
</tbody>
</table>

Second Year: second semester

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG5052S</td>
<td>Dissertation MLA</td>
<td>120</td>
<td>9</td>
</tr>
</tbody>
</table>

Total second year credits .. 188

Total credits .. 364

Master of Philosophy specialising in Conservation of the Built Environment [EM027APG05]

Programme Convener:
TBA

Note: The Master of Philosophy specialising in Conservation of the Built Environment is offered over two years.
The primary aim of the M Phil specialising in Conservation of the Built Environment is to produce graduates with the necessary knowledge, values and skills to engage effectively with the challenges
arising in the very diverse multi-disciplinary intellectual, cultural and physical environments where heritage and heritage resources are present. The emphasis of the programme is on developing competence in the professional and practical fields of conservation of and in the built environment and of heritage resource management. The Programme curriculum is cross-disciplinary in orientation and exposes students to the very broad range of research, analytical, evaluative, planning and management issues and challenges that they are likely to encounter in the field. While this Programme is focused on the built environment and on practical and technical aspects of conservation and heritage resource management, it does also introduce students to critical issues in heritage arenas and, in particular, public history and shares several courses with a related Programme offered in the Centre for African Studies which is more theoretically and critically oriented. The Programme is, therefore, designed to produce professional training for professionals working in or wishing to enter the fields of conservation of the built environment and heritage resource management and to produce research that is practically oriented and that is publishable.

First Year: first semester

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG5073F</td>
<td>Law of Conservation & Development</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>APG5074F</td>
<td>Conservation Disciplines & Practice</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>APG5080F</td>
<td>History of Conservation</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>

First Year: second semester

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG5081S</td>
<td>Researching & Assessing Heritage Resources</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>AXL5203S</td>
<td>Critical Issues in Heritage</td>
<td>24</td>
<td>9</td>
</tr>
</tbody>
</table>

Total first year credits ... 84

Second Year: first semester

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG5077F</td>
<td>Conservation, Development & Impact Assessment</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>APG5078F</td>
<td>Research Methodologies</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>

Second Year: second semester

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG5071S</td>
<td>Minor Dissertation Design</td>
<td>60</td>
<td>9</td>
</tr>
</tbody>
</table>

Total second year credits ... 100

Total credits ... 184

Master of Philosophy in Engineering specialising in Geomatics

[EM025APG08]

EM025 MPhil in Engineering specializing in Geomatics is a Research Degree.

Core Course

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG5000W</td>
<td>Dissertation</td>
<td>180</td>
<td>9</td>
</tr>
<tr>
<td>APG5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>09</td>
</tr>
</tbody>
</table>

MSc in Engineering specialising in Geomatics

[EM023APG08]

EM023 MSc in Engineering specializing in Geomatics is a Research Degree.

Core Course

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG5000W</td>
<td>Dissertation</td>
<td>180</td>
<td>9</td>
</tr>
</tbody>
</table>
Doctoral Programmes

Doctor of Philosophy

[ED001APG01,APG02,APG08]

ED001 Doctor of Philosophy is a Research Degree

Core Course

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG6000W</td>
<td>Thesis (Geomatics)</td>
<td>360</td>
<td>10</td>
</tr>
<tr>
<td>APG8000W</td>
<td>Thesis (Architecture & Planning)</td>
<td>360</td>
<td>10</td>
</tr>
</tbody>
</table>

Course descriptions are set out in the section Courses Offered. The course code abbreviation for Architecture, Planning and Geomatics is APG.

Course Outlines

APG4007F INTRODUCTORY GIS

24 NQF credits at HEQSF level 8

Convener: S Hull

Co-requisites: APG4050W, APG4008F, APG4009F

Course outline:

This course aims to provide the knowledge and skills in the fundamental concepts of Geographical Information Systems for scientists, especially in the fields of natural, earth and computer sciences. Instruction will take the form of formal lectures, seminars, practicals, assignments and self-study using internet resources and GIS software. Course content: GIS concepts, spatial relationships, topology, spatial and non-spatial data structures and algorithms, vector databases, raster data structures, data capture for raster GIS, spatial analysis using the raster data model, relational database management systems, data modelling, data display and presentation, theory of map projections.

Lecture times: 4th period Mon-Fri. Practicals once a week Fri 14h00-17h00

DP requirements: Completion of practical assignments with a minimum average of 50% and to the satisfaction of the course convener, a minimum test average of 40% and an 80% attendance record.

Assessment: Tests 20%, practical assignments 25%, examination 3 hours 55% (sub minimum 40%).

APG4008S ADVANCED GIS

24 NQF credits at HEQSF level 8

Convener: Associate Professor J Smit

Course entry requirements: BSc(Hons) in GIS students: APG2018X, APG4007F, APG4009F

Course outline:

This course builds on the theory and skills developed in the Introductory GIS course. The aim of this course is to provide students with advanced level GIS skills and knowledge including GIS management issues, GIS application design, Internet GIS and 3D modelling. Course Content: multidimensional GIS and advanced data structures, spatial data infrastructures and metadata, distributed GIS, digital cartography, GIS application design and development using software engineering tools, GIS project management, spatial analysis, copyright and privacy issues.

DP requirements: Completion of practical assignments to the satisfaction of the course convener (test average of 35% or more) and an 80% attendance record.

Assessment: Tests, practical assignments, examination 3 hours (sub minimum 40%).
APG4009F COMPUTING FOR GIS
18 NQF credits at HEQSF level 8
Convener: Dr G Sithole
Co-requisites: APG4007F, APG4050W
Course outline:
This course aims to provide students with the fundamental scripting and programming skills they will need to enhance GIS software and develop stand-alone GIS applications using general software environments. It also aims to provide students with the skills needed to interface between GIS applications and other software applications. Course Content: Structure and Syntax of Visual Programming Language, development of GIS functionality in general programming environments, customisation of GIS using scripting languages, extension of attribute management through external DB links and SQL
DP requirements: Completion of practical assignments to the satisfaction of the course convener (test average of 35% or more) and an 80% attendance record.
Assessment: Tests, practical assignments.

APG4020F PLANNING THEORY & PRACTICE
8 NQF credits at HEQSF level 8
Convener: Assoc Prof T Winkler
Course entry requirements: None
Co-requisites: None
Course outline:
This course aims to develop an understanding of the evolution of the planning discipline; and changing values, concerns, methods, outcomes and plan forms over the last century.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: 75% of the final result is based on the submission and assessment of a term paper, 25% based on group work.

APG4021F URBAN INFRASTRUCTURE
Elective for students in BAS(Hons)
12 NQF credits at HEQSF level 8
Convener: Dr N Odendaal
Course entry requirements: None
Co-requisites: None
Course outline:
The focus of this course is infrastructure and human settlements as structuring elements in the ongoing development and evolution of cities. The central purpose of the course is to introduce students to a range of factors which effect the growth and development of settlement space. The spatial scope ranges from regional systems of settlements to the organisation or structure of individual settlements. The emphasis is on breadth rather than the depth. Students examine how different actors influence urban systems and the role of infrastructure in enabling urban transition.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: 80% on submission and assessment of term paper; 20% on presentation, submission and assessment of group seminar paper.

APG4022F PLANNING PROJECT A
32 NQF credits at HEQSF level 8
Convener: Assoc Prof T Winkler and Dr Nancy Odendaal
Course entry requirements: None
Co-requisites: None
Course outline:
This course focuses on urban planning at the local and metropolitan scales and involves the development of descriptive, explanatory and, evaluative skills at both these scales. An introduction to visual and verbal communication techniques forms part of the course. Fieldwork is an integral requirement of the course.

Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: 100% of the final result is based on project work. Students are required to pass both Parts 1 and 2 of the course which each counts 50% of the total mark.

APG4023S URBAN ECONOMIC DEVELOPMENT PROCESSES
12 NQF credits at HEQSF level 8
Convener: Professor V Watson
Course entry requirements: None
Co-requisites: None
Course outline:
This course aims to develop an understanding of the economic (formal and informal) drives of contemporary urban development processes; relevant actors and institutions, the role of planning in the urban economic growth and change. Land/property-related factors shaping urban development are also covered.

Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: The final result is based on 30% of the group product and 70% on an individual term paper.

APG4024S PLANNING AND GOVERNMENTAL SYSTEMS
12 NQF credits at HEQSF level 8
Convener: Dr N Odendaal
Course entry requirements: None
Co-requisites: None
Course outline:
This course aims to develop an understanding of the political and institutional context of planning; systems of representation and administration; local government financing and budgeting; integrated development planning; negotiation and public participation; "package of plans" approaches; public-private partnerships; and plan monitoring and evaluation.

Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: 100% of the final result is based on the submission and assessment of a term paper.

APG4025S REGULATORY & LEGAL FRAMEWORK
12 NQF credits at HEQSF level 5
Convener: F Ogle
Course entry requirements: None
Co-requisites: None
Course outline:
This course aims to develop an understanding of the regulatory and legal framework. Topics include: planning law; introduction to South African law; administrative law; environmental law; current legislative framework for planning; development control; and options for a new planning framework.

Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: 3-hour written examination counts 100%.
APG4026S PLANNING PROJECT B
32 NQF credits at HEQSF level 8
Convener: Dr N Odendaal and Assoc Prof T Winkler
Course entry requirements: APG4022F
Co-requisites: None
Course outline:
The project focuses on urban planning intervention at both local and metropolitan scales and on plan implementation. Fieldwork is an integral requirement of the course.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: 100% of the final result is based on project work. Students are required to pass both Parts 1 and 2 of the course which each count 50% of the total mark.

APG4028F ASPECTS OF CITY DESIGN
Elective for students in BAS(Hons)
12 NQF credits at HEQSF level 8
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
The course focuses on historically conceptualised concepts of urban structure and performance at the local area scale. It includes an introduction to city planning: conceptual framework; role of the planner; issues of planning; approach of the programme. Aspects of city design: the need for design and a design approach to planning; the process of design; exploration of fundamental ideas. Historical case studies: framework of evaluation; overseas case studies; local case studies.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: 100% of the final result is based on the submission and assessment of a term paper.

APG4029F NATURAL SYSTEMS
Elective for students BAS(Hons).
12 NQF credits at HEQSF level 8
Convener: T Katzschner
Course entry requirements: None
Co-requisites: None
Course outline:
This course focuses on the relationship between nature and settlement. It deals with central issues, methods of environmental analysis and evaluation, and substantive knowledge relating to: land systems, water systems, air systems, life systems, and the related design and planning implications.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: 100% of the final result is based on the submission and assessment of a term paper.

APG4030S HISTORY & THEORY OF LANDSCAPE ARCHITECTURE
12 NQF credits at HEQSF level 8
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
This course covers the great traditions and developments in landscape architecture of both the East and the West, and explores the influence of these on contemporary landscape works.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: 100% of the final result is based on a series of assignments.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Level</th>
<th>Convener</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG4031F</td>
<td>LANDSCAPE REPRESENTATION</td>
<td>12</td>
<td>HEQSF 8</td>
<td>TBA</td>
</tr>
<tr>
<td></td>
<td>Course entry requirements: None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-requisites: None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course outline: This course covers landscape techniques and includes landscape graphics; map reading; air-photo interpretation and an introduction to GIS.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture times: Refer to departmental timetable for further detail.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DP requirements: None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment: 100% of the final result is based on the final project.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Level</th>
<th>Convener</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG4032S</td>
<td>CONSTRUCTING LANDSCAPE SYSTEMS</td>
<td>12</td>
<td>HEQSF 8</td>
<td>TBA</td>
</tr>
<tr>
<td></td>
<td>Course entry requirements: None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-requisites: None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course outline: This course covers values, principles and informants for site planning and the design of urban spaces, streetscapes and open spaces including paving, street furniture, lighting, signage and water elements.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture times: Refer to departmental timetable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DP requirements: None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment: 100% of the final result is based on a series of assignments, practicals and projects.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Level</th>
<th>Convener</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG4033S</td>
<td>LANDSCAPE TECHNIQUES II</td>
<td>8</td>
<td>HEQSF 8</td>
<td>Dr J Raxworthy</td>
</tr>
<tr>
<td></td>
<td>Course entry requirements: APG4031F or permission of course convener.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-requisites: None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course outline: The course covers the tools and routines in computer applications related to landscape planning work, including CAD and image manipulation programmes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture times: Refer to departmental timetable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DP requirements: None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment: 100% of the final result is based on the final project.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Level</th>
<th>Convener</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG4034F</td>
<td>TERRAIN ANALYSIS</td>
<td>12</td>
<td>HEQSF 8</td>
<td>TBA</td>
</tr>
<tr>
<td></td>
<td>Course entry requirements: None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-requisites: None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course outline: This course covers terrain analysis methodology covering geological, hydrological, coastal, climatic, biotic and visual assessments, and the implications of these for planning and design. Includes mandatory ecology camp/s.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture times: Refer to departmental timetable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DP requirements: None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment: 100% of the final result is based on a series of assignments, practicals and projects.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APG4035F PLANNING TECHNIQUES I
12 NQF credits at HEQSF level 8
Course entry requirements: None
Co-requisites: None
Course outline:
This course covers map work and cartographic/aerial photography interpretation; techniques of graphic presentation and communication, introduction to geographical information systems, and report writing.
Lecture times: Refer to departmental timetable for further detail.
DP requirements: None
Assessment: 100% of the final result is based on the final project.

APG4036F LANDSCAPE ARCHITECTURE STUDIO I
32 NQF credits at HEQSF level 8
Convener: C Hindes
Course entry requirements: None
Co-requisites: None
Course outline:
This course covers the analysis of landscape and urban structure and performance at the local scale (diagnostic and evaluative skills); concept design/s for a 'greenfield' site within a local area (development of design and plan-making skills); and elaboration of the implications for implementation.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: 100% of the final result is based on the final portfolio review.

APG4037S LANDSCAPE ARCHITECTURE STUDIO II
32 NQF credits at HEQSF level 8
Convener: C Hindes
Course entry requirements: APG4036F
Co-requisites: APG4034F or permission of course convener.
Course outline:
Urban context and natural processes; site planning and concept design for a 'brownfield' site, including implementation strategies.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: 100% of the final result is based on the final portfolio review.

APG4038S PLANNING TECHNIQUES II
12 NQF credits at HEQSF level 8
Convener: Assoc Prof T Winkler and Mr A Rhodes
Course entry requirements: None
Co-requisites: None
Course outline:
This course covers quantitative methods, topics include: Scales of measurement, descriptive statistical methods, data summaries, introduction to statistical inference, tests of association, measures of correlation, simple linear regression. Qualitative methods: introduction to qualitative research methods (including case study methods; ethnographic methods; participatory action research (PAR); and oral histories and other qualitative methods).
Lecture times: Refer to departmental timetable for further detail.
DP requirements: None
Assessment: 65% of the final result is based on a STATS computer-based examination (with a sub-minimum requirement of 50%) and 35% on an assignment on the qualitative methods and proposal development.

APG4039F ADVANCED HISTORY & THEORY OF ARCHITECTURE
12 NQF credits at HEQSF level 8
Convener: M Fraschini
Course entry requirements: None
Co-requisites: None
Course outline:
A survey of ideological and aesthetic terms of architectural theory and criticism by way of locating a close reading of contemporary texts within a broader social and cultural context. The course offers an advanced theoretical examination of the cultural and social role of design to enable evaluation and articulation of the interaction between theory and practice, and assessment of strategies for the making of architecture.
Lecture times: Refer to departmental timetable
DP requirements: 80% attendance; 100% of all hand-ins and participation in discussion.
Assessment: 50% Research paper 20% visual diary, 15% exercises, 15% seminar presentation and participation. Examination counts 50%, year mark 50%.

APG4041S ADVANCED BUILDING TECHNOLOGY
12 NQF credits at HEQSF level 8
Convener: F. Carter
Course entry requirements: None
Co-requisites: None
Course outline:
This course aims to prepare students to understand the structural, constructional and material consequences and constraints on design decision-making. It investigates how the interaction of systems of structure, enclosure, environment, materials, and detailing informs spatial and formal expression in architecture. The course focuses on contemporary building and environmental technologies in relation to programmatic requirements and innovation.
Lecture times: Refer to departmental timetable
DP requirements: 80% attendance; 100% of all hand-ins, participation and discussions.
Assessment: Case study drawings and research reports 90%, seminar participation 10%.

APG4042F ARCH DESIGN STUDIO I
48 NQF credits at HEQSF level 8
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
This course covers a range of complex design problems involving issues of the public and private nature of the urban and suburban context that calls for appropriate analysis and creative invention in the making of architecture. The topic, focus, requirements and duration of projects will be determined by the studio convener.
Lecture times: Refer to departmental timetable
DP requirements: 80% attendance; 100% of all hand-ins, participation and discussions.
Assessment: Oral presentation of architectural design project/s.

APG4043S ARCHITECTURAL DESIGN STUDIO II
48 NQF credits at HEQSF level 8
Convener: I Low
Course entry requirements: APG4042F
Co-requisites: None
Course outline:
This course covers a range of complex design problems involving issues of the public and private nature of the urban and suburban context that calls for appropriate analysis and creative invention in the making of architecture. The topic, focus, requirements and duration of projects will be determined by the studio convener.
Lecture times: Refer to departmental timetable
DP requirements: 80% attendance; 100% of all hand-ins, participation and discussions.
Assessment: Oral presentation of architectural design project/s.

APG4044S PROFESSIONAL PRACTICE
12 NQF credits at HEQSF level 8
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
This course is an introduction to the knowledge and skills required to procure, administer and manage an architectural project. The course offers an opportunity to explore the essential elements of professional practice related to the role and function of the architect, differing modes of practice in the public and private sectors, the client-architect relationship, critical legislation influencing the role and conduct of architects, building procurement systems and conflict resolution. The course will also investigate the challenges facing the architectural profession, the meaning of professionalism and ethical and social problems within current architectural practice.
Lecture times: Refer to departmental timetable
DP requirements: 80% attendance; 100% of all hand-ins, participation and discussions.
Assessment: Written examination.

APG4047S PLANTS & DESIGN
12 NQF credits at HEQSF level 8
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
This course aims to develop an understanding of plants and design. It covers vegetation types of Southern Africa and its limiting factors, and includes identification and utilisation of plant material, principles of permaculture and horticulture; planting plans, schedules and specifications.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: 100% of the final result is based on a series of practicals.

APG4048S ARCHITECTURE RESEARCH METHOD
12 NQF credits at HEQSF level 8
Convener: Professor I Low
Course entry requirements: Bachelor of Architectural Studies
Course outline:
This course is an investigation of practices and strategies that inform an analysis, synthesis and representation of ideas in architectural design research. The course offers a theoretical and practical introduction to research as an aspect of design by investigating activities that support and enhance architectural design, such as research proposal writing, case study analysis and the application of mapping, programming and siting studies in relation to architectural inquiry. It prepares students to undertake academic and design research in a critical and structured manner.
Lecture times: Refer to departmental timetable
DP requirements: 80% attendance and 100% submission of assignments
Assessment: Is based on 100% of submission and assessment of coursework assignments.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG4049F</td>
<td>ASPECTS OF HISTORY & THEORY I</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Convener: Associate Professor N Coetzer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course entry requirements: None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-requisites: None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course outline:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Within the broad area of History and Theory of Architecture an architectural elective is offered each year of which the content and the coordinators vary depending on visiting lectures, research interests of staff and topical issues. Detailed contents will be published each year.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture times: Refer to departmental timetable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DP requirements: 80% attendance and 100% submission of all assignments</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment: By submission and review of term paper or equivalent research project</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG4050W</td>
<td>GEO-INFORMATICS PROJECT</td>
<td>40</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Convener: Associate Professor Julian Smit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course entry requirements: None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-requisites: None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course outline:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This project aims to provide an opportunity to demonstrate ability to design, execute and report on a Geo-Information Science (GISc) problem. Students will start a GISc project at the beginning of the year, and will submit a planning and proposal document before the end of the first term. Students shall then perform their project plan and report their results and conclusions in a main project report, poster and oral presentation of their work in the second semester. Course Content: Presentation of the project plan and proposal, execution of the project, presentation of the results in written, poster and oral form.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DP requirements: None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment: Project report ; poster presentation ; and may include an oral presentation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG4051Z</td>
<td>SELECTED TOPICS IN APPLIED SCIENCE</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Course outline:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Only for students who have been granted credit and exemption for courses taken elsewhere.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture times: None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DP requirements: None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment: None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>APG4052F</td>
<td>URBAN DESIGN REPRESENTATION</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Convener: TBA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course entry requirements: None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-requisites: None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course outline:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course aims to develop analytical and presentation skills (both manual/hand drawn and computer based) for use in the urban design studio. An innovative slant is necessitated by the dynamic nature of graphic software evolution and the breadth of communication options available to designers. Instruction is through both demonstration and the use of tutorials for independent development/combination of techniques to suit different design problems. It also an introduction to Geographical Information Systems (GIS).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The portfolio developed during the course of the semester needs to demonstrate an ability to successfully select and master appropriate communication/representation techniques in the context of presenting urban design work in a legible, graphic format.

Lecture times: Refer to departmental timetable

DP requirements: None

Assessment: The assessment of this course is based on the submission and presentation of projects and assignments through the semester as well as a final portfolio presentation.

APG4054F LANDSCAPE SYSTEMS
8 NQF credits at HEQSF level 12
Convener: TBA
Course entry requirements: None
Course outline:
This course aims to create an understanding of the physical context of landscape architectural interventions through the study of various attributes which form the physical structure of the landscape at the district and metropolitan scales. An understanding of the physical structure of the landscape and the ability to identify and evaluate the attributes thereof which are relevant to landscape architectural planning and design.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: The formal assessment of this course is based 100% on an examination of the final portfolio by oral presentation and review.

APG4055S ENVIRONMENTAL PLANNING AND MANAGEMENT PROCESSES
8 NQF credits at HEQSF level 8
Convener: Ms Tania Katzschner
Course entry requirements: None
Co-requisites: None
Course outline:
This course aims to provide students with experience in evaluating the environmental consequences of policies, programmes, plans and projects. Included are the need and desirability for evaluating environmental consequences, current and future environmental assessment tools, environmental impact assessment, strategic environmental assessment, sustainability assessment, public participation in environmental governance, biodiversity in impact assessment, social impact assessment, and environmental management planning.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: Based on paper submission of assessment, which counts 55% and a group work assignment which counts 45.

APG4056F ASPECTS OF HISTORY & THEORY II
12 NQF credits at HEQSF level 8
Course outline:
This course aims within the broad area of history and theory of architecture to provide an architectural elective course each year on a special topic.

APG5000W MASTERS DISSERTATION GEOMATICS
180 NQF credits at HEQSF level 9
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
A research project of a theoretical or practical nature, a critical review of a specified topic based on a comprehensive search of the literature or available data, development of an item of equipment or a technique involving novel features or advanced design, any other study acceptable to the Faculty.

Lecture times: None
DP requirements: None
Assessment: Submission of dissertation (100%).

APG5001W DISSEMINATION: GEOMATICS 120
120 NQF credits at HEQSF level 9
Convener: TBA

APG5001Z MASTERS DISSERTATION GEOMATICS
120 NQF credits at HEQSF level 9

APG5020F REGIONAL PLANNING PROJECT
32 NQF credits at HEQSF level 9
Convener: T Katzschner and Professor V Watson.
Co-requisites: APG5023F
Course outline:
This advanced course focuses on regional planning issues at a regional scale and involves the development of descriptive, explanatory, evaluative and interventive skills, using a particular local region as a project site.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: The final result is based on several phases of project work, 50% individual and 50% group work.

APG5023F REGIONAL PLANNING THEORY
20 NQF credits at HEQSF level 9
Convener: T Katzschner and Professor V Watson.
Course entry requirements: None
Co-requisites: APG5020F
Course outline:
This advanced course aims to develop an understanding of the natural landscape framework of regional planning. Topics include: conceptual exploration of landscape processes and patterns; methods of regional landscape analysis and synthesis; and landscape management frameworks. The course then explores the regional economic development framework. Topics include: models of regional economic development; issues and debates; and SA national and regional economic development policies. The course concludes with the settlement and services framework of regional planning: processes of settlement formation. Topics include: resultant settlement patterns (size and spatial); major issues and debates relating to service provision.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: 100% of the final result is based on the submission and assessment of two term papers.

APG5024S PLANNING TECHNIQUES III
12 NQF credits at HEQSF level 9
Convener: T Katzschner
Course entry requirements: None
Co-requisites: None
Course outline:
The aim of this course is to provide students with experience in evaluating the environmental consequences of policies, programmes, plans and projects. Topics include: the need and desirability
for evaluating the environmental consequences of policies, plans and programmes, current and future environmental assessment tools, environmental impact assessment (EIA), strategic environmental assessment, sustainability assessment, public participation in environmental governance, biodiversity in impact assessment, social impact assessment, and environmental management plans.

Lecture times: Runs as a block week in the second week of the second semester.

DP requirements: None

Assessment: Based on a paper submission of assessment which counts 55% and a group work assignment which counts 45%.

APG5025F CONTEMPORARY THEORIES OF LANDSCAPE ARCHITECTURE
Elective for students in BAS(Hons)
12 NQF credits at HEQSF level 9

Convener: Dr J Raxworthy

Course entry requirements: None

Co-requisites: None

Course outline:
This course aims to develop an understanding of contemporary landscape architecture, spanning the 20th Century, to the present day, by exploring a range of issues and themes related to landscape theory and practice.

Lecture times: Refer to departmental timetable

DP requirements: None

Assessment: 100% of the final result is based on a series of assignments.

APG5026F DETAIL LANDSCAPE DESIGN & DOCUMENTATION
24 NQF credits at HEQSF level 9

Convener: TBA

Course entry requirements: None

Co-requisites: None

Course outline:
This course covers the principles of grading, drainage, storm water management, vehicular and pedestrian circulation, and road alignment design, client-architect relationship, contract documentation and administration, procurement systems, and legislation guiding professional conduct of landscape architects (CBE and SACLAP).

Lecture times: Refer to departmental timetable

DP requirements: None

Assessment: 100% of the final result is based on a series of assignments and projects.

APG5029F ADVANCED LANDSCAPE ARCHITECTURE STUDIO
32 NQF credits at HEQSF level 9

Convener: Dr J Raxworthy

Course entry requirements: APG4032S, APG4037S or permission of course convener.

Co-requisites: APG5026F, APG5053F or permission of course convener.

Course outline:
This course covers the structure and functioning of landscapes at the large scale, and the precinct scale, suitability evaluations; settlement and resource management, urban landscape design and detailing.

Lecture times: Refer to departmental timetable

DP requirements: None

Assessment: 100% of the final result is based on the final portfolio review.
APG5044F WEB GIS
18 NQF credits at HEQSF level 9; 20 hours on GIS software and application development.
Convener: TBA
Course outline:
This course covers computer networks in relation to web GIS. Topics include: principles of computer networks, hardware/software, client/server computing and distributed systems internet concepts; overview of internet concepts & features: internet protocol, domain name system, internet services, WWW, web servers, web clients. Web application development: web page design principles, HTML, XML, data formats, helper applications, Java, databases and the web. Internet GIS: application of internet services to GIS, and internet GIS software.
DP requirements: None
Assessment: 3 hour examination (55%) and assignments and tests (45%).

APG5045S GIS FOR URBAN & REGIONAL PLANNING
18 NQF credits at HEQSF level 9; 40 hours of directed reading and research..
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
The course covers three main areas:
Land Use and Cadastral systems: Land Information Systems. Decision support systems for Land Use Planning. GIS and the Cadastre.
Lecture times: TBA
DP requirements: None
Assessment: Seminar(s) (40%), term paper (60%).

APG5046S ENVIRONMENTAL MANAGEMENT
18 NQF credits at HEQSF level 9; 40 hours of directed reading and research.
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
This course aims to develop an advanced understanding of environmental management. Topics include: spatial decision support systems for natural resources management, GIS and remote sensing in environmental impact assessment and multi-criteria evaluation analysis, geological modelling, mathematical modelling for geography, 3-D visualization, 3-D data structures for environmental data modelling, and environmental data acquisition techniques.
DP requirements: None
Assessment: Seminar(s) (40%), term paper (60%).

APG5047S GEO-INFORMATICS
18 NQF credits at HEQSF level 9; 40 hours of directed reading and research..
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
This course in geo-informatics covers advanced database systems, spatial indexing, hierarchical structures, 3-D modelling systems and virtual reality, advanced systems development, and advanced GIS application development.

DP requirements: None
Assessment: Seminar(s) (40%), term paper (60%).

APG5051Z MCRP MINOR DISSERTATION
120 NQF credits at HEQSF level 9
Convener: Professor V Watson and T Katzschner
Course entry requirements: APG5020F
Co-requisites: None
Course outline:
This course consists of a supervised dissertation on an approved subject usually chosen by the student.
Lecture times: None
DP requirements: None
Assessment: 80% of the final result is based on the submission and examination of a thesis document and 20% is based on a presentation of the final dissertation to a review panel.

APG5052S MLA DISSERTATION
120 NQF credits at HEQSF level 9
Convener: Dr J Raxworthy
Course entry requirements: APG5029F
Co-requisites: None
Course outline:
This course consists of a major landscape architecture design project of the student's choice undertaken under staff guidance.
Lecture times: None
DP requirements: None
Assessment: 100% of the final result is based on the final dissertation review.

APG5061Z DISSERTATION PREPARATION
0 NQF credits at HEQSF level 9
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
The aim of this course is to allow the student to undertake preparatory work for the master’s dissertation. Work required includes literature searches and reviews; identification of the research problem, objectives and hypothesis; consideration of research methodology; planning for the active research phase; and ensuring that research infrastructure (e.g. apparatus etc.) is or will be in place. The student should maintain regular contact with his/her supervisor in order to show evidence of suitable progress towards these aims. The supervisor must indicate satisfactory fulfilment of the course aims prior to the student proceeding to the dissertation.
DP requirements: None
Assessment: None

APG5071S RESEARCH PROJECT
60 NQF credits at HEQSF level 9
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
Candidates will undertake a dissertation in which they will design, develop or review a conservation-related topic/subject. The dissertation must include primary research into the history of the building, place or environment and its composition or current state. The dissertation will require approximately 600 hours of work; and the dissertation may need to be defended orally at an examination.

DP requirements: Satisfactory completion of all coursework
Assessment: 100% by examination of the dissertation

APG5073F LAW OF CONSERVATION & DEVELOPMENT
12 NQF credits at HEQSF level 9
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
This course aims to develop an understanding of the law of conservation and development. Topics include: introduction to South African law; administrative law; heritage resources law; and current legislative framework for planning and development control.
Lecture times: Runs on a block-release system
DP requirements: 80% attendance of lectures and seminars and 100% submission of assignments.
Assessment: 50% of the examination result plus 50% of the year mark would make up the final grade.

APG5074F CONSERVATION DISCIPLINES & PRACTICE
8 NQF credits at HEQSF level 9
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
This course introduces the several disciplines engaged in the conservation of the built environment, most specifically the current practice of pre-colonial and historical archaeology, architectural restoration and conservation, historical town and urban conservation, and conservation of the cultural landscape.
Lecture times: Course runs on a block release system
DP requirements: 80% attendance of lectures and seminars and 100% submission of assignments.
Assessment: The year mark counts 100% of the final grade.

APG5076S CONSERVATION DEVELOPMENT & IMPACT ASSESSMENT I
Available to repeat students only
8 NQF credits at HEQSF level 9
Convener: TBA

APG5077F CONSERVATION DEVELOPMENT & IMPACT ASSESSMENT II
20 NQF credits at HEQSF level 9
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
This studio work course, following the Part I course, further integrates and develops the knowledge gained through the courses in the earlier part of the programme; it focuses on the historical process leading to the current composition of the environment and assessments of heritage resources, it develops the student’s ability to assess the impacts of development on the environment and its
significance; and it is intended to give experience in working with other professional disciplines. This more advanced Part II course aims to prepare the student for the mini-dissertation.

Lecture times: Course runs on a block release system
DP requirements: 90% attendance of lectures and seminars and 100% submission of assignments.
Assessment: The year mark counts 100% of the final grade.

APG5078F RESEARCH METHODOLOGIES
20 NQF credits at HEQSF level 9
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
This course consolidates the material of the earlier courses and requires the student to develop a research proposal for a thesis to be written during the second semester. This research proposal will include a problem statement, the design of the research, the methodologies to be adopted, the sources to be consulted, people to be interviewed, a bibliography and the relation of the proposed thesis current issues in conservation and heritage resource management.
Lecture times: Course runs on a block release system
DP requirements: 80% attendance of lectures and seminars and 100% submission of assignments
Assessment: The year mark counts 100% of the final grade.

APG5079W DESIGN DISSERTATION
120 NQF credits at HEQSF level 9
Convener: Associate Professor N Coetzer
Course entry requirements: BAS(Hons)
Co-requisites: APG5088Z
Course outline:
A design dissertation which integrates self-initiated, self-motivated architectural major design project produced under supervision of an individual design research inquiry, grounded in a sound methodological base that supports the production of a research document as a basis for informal design discussion in the major design project.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: 100% on presentation and examination of design dissertation

APG5080F HISTORY OF CONSERVATION
20 NQF credits at HEQSF level 9
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
This course reviews the origins from the earliest times and the development of the ideas and practices of conservation and restoration of architecture, or towns, of the cultural landscape, and of archaeology.
Lecture times: Course runs on a block release system
DP requirements: 80% attendance of lectures and seminars and 100% submission of assignments
Assessment: 50% of the examination result plus 50% of the year mark would make up the final grade.
APG5081S RESEARCHING & ASSESSING HERITAGE RESOURCES
20 NQF credits at HEQSF level 9
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
This course introduces the methods adopted researching the history of the built environment, including archival material, the records of statutory authorities and other institutions, oral history, social surveys and interviewing. The course also introduces the measures required by the legislation to assess the cultural significance of heritage resources.
Lecture times: Course runs on a block release system
DP requirements: 80% attendance of lectures and 100% completion of assignments.
Assessment: By examination of an assignment (100%).

APG5082F URBAN DESIGN THEORY I
12 NQF credits at HEQSF level 9
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
The course aims to focus on historical and contemporary concepts of urban space design. It aims to investigate the value of urban design through considering performance at a local area/precinct scale. This includes: Introduction urban design, key moments in the history of urban design, the role of urban design relative to other professions of the built environment; the value of theory and conceptual frameworks; the value of morphological and typological analysis, the role of urban design in the global South. The role of urban design is animated via case study analysis (both international and local) and reflection on urban design practice.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: The assessment of this course is based on the submission of a final/theme paper that counts 100% of the examination mark.

APG5083F URBAN DESIGN STUDIO
48 NQF credits at HEQSF level 9
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
This studio-based course aims to focus on strategic urban design intervention at a sub-regional to local scale. Sites are selected for a simulated projects, which then becomes the subject of focused urban design exercises. Urban design intervention is considered at both a catalytic and responsive level. Exploration is initially via engagement in groups and then proceeds to individual exploration and presentation of design ideas. Physical place making is considered in the context of social, political and economic constraints. Refinement and synthesis of ideas requires continual review of strategies and ideas presented in the studio. Parallel studios aimed at synchronised overlap with studios in architecture, planning and landscape architecture is encouraged.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: The assessment of this course is based on 30% group work analysis and 70% individual work project.
APG5084F RESEARCH METHODS FOR URBAN DESIGN
20 NQF credits at HEQSF level 9
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
This course aims to equip the students with the tools to develop a research proposal for the Urban Design Research Project which is to be completed during the second semester. This research proposal will include a problem statement, the design of the research, the methodologies to be adopted, the sources to be consulted, interview strategies, a bibliography and the relation of the proposed research project to urban design discourse.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: The assessment of this course is based on the submission of a final paper that counts 100% of the examination mark.

APG5085S URBAN DESIGN THEORY II
20 NQF credits at HEQSF level 9
Convener: TBA
Course entry requirements: None
Co-requisites: None
Course outline:
This praxis-oriented, seminar-based course aims to offer students the opportunity to each identify appropriate urban design theories via a literature review and to relate theory to topical themes within the current urban design discourse. Learning happens both through independent reading and through engaging with lecturers and fellow students in discussing the relevance of the theories identified during seminars. Where appropriate, the relevance of theory is investigated and communicated via case study analysis. The widely recognized importance of reflective practice and the weak theoretical base of urban design is considered via selective engagement of part time tutors involved in practice and who engage in debate on theory whilst reflecting on the realities of contemporary practice.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: The assessment of this course is based on 30% seminar presentations and 70% for the submission and assessment of a term paper.

APG5086S URBAN DESIGN RESEARCH PROJECT
60 NQF credits at HEQSF level 9
Convener: TBA
Course entry requirements: APG5082F; APG5083F; APG4052F; APG5084F and one approved elective course.
Co-requisites: None
Course outline:
The research project aims to utilise the skills developed in the preceding course Research Methods for Urban Design. The aim of the research project is to develop and demonstrate integrated research and urban design skills, identify and address a well-defined urban design issue or question in the context of a selected site, develop an ability to evaluate and analyse design orientated research findings according to explicit and well-defined criteria and to develop and defend a design response to the issue/question raised.
Lecture times: Refer to departmental timetable
DP requirements: None
Assessment: The assessment of this course is based 100% on the submission of a final research project and assessment by final portfolio presentation.
APG5088Z THEORY AND TECHNOLOGY STUDIES

60 NQF credits at HEQSF level 9
Convener: Associate Professor N Coetzer
Course entry requirements: None
Co-requisites: APG5079W
Course outline:
This course is a self-initiated and self-motivated research project on architectural theory, produced under supervision.
DP requirements: 80% attendance and 100% submission of assignments
Assessment: Research paper (100%).

APG6000W PHD IN GEOMATICS

360 NQF credits at HEQSF level 10
Convener: TBA
Course outline:
A PhD thesis is required to be an original, coherent and consistent body of work which reflects the candidate’s own efforts. The thesis may not be more than 80 000 words. A candidate will undertake research, and such advanced coursework as may be required, under the guidance of a supervisor or supervisors appointed by Senate.
Lecture times: None
DP requirements: None
Assessment: Written work counts 100%.

APG7000W MASTERS DISSERTATION ARCHITECTURE & PLANNING

180 NQF credits at HEQSF level 9
Convener: TBA
Course entry requirements: Hons

APG7001W DISSERTATION ARCHITECTURE & PLANNING

120 NQF credits at HEQSF level 9
Convener: TBA
Course entry requirements: Hons

APG7001Z MASTERS ARCH & PLANNING DISS

120 NQF credits at HEQSF level 9
Convener: TBA
Course entry requirements: Hons
Co-requisites: None
DP requirements: None
Assessment: 100% submission of dissertation

APG8000W PHD IN ARCHITECTURE & PLANNING

360 NQF credits at HEQSF level 10
Convener: TBA
Course outline:
A PhD thesis is required to be an original, coherent and consistent body of work which reflects the candidate’s own efforts. The thesis may not be more than 80 000 words. A candidate will undertake research, and such advanced coursework as may be required, under the guidance of a supervisor or supervisors appointed by Senate.
Lecture times: None
DP requirements: None
Assessment: Written work counts 100%
END5050X MASTERS JOURNAL PAPER REQUIREMENT
0 NQF credits at HEQSF level 9

Course outline:
The aim of submitting a research paper for the masters’ degree is to develop an understanding of what is required for the publication of research findings. To this end a candidate shall submit a summary of the key aspects of the dissertation, presented in the form of a paper which is, potentially, of publishable standard, approved by a Panel of Assessors. This is a requirement for candidates submitting either a 180 or 120 credit dissertation for the following degrees: MSc in Construction Economics and Management, MSc(Eng), MSc(ProjMan), MPhil, MSc in Property Studies. Refer to the appropriate degree rules.

DP requirements: None
CHEMICAL ENGINEERING

The Department offers the following Postgraduate programmes in coursework, in addition to MSc and PhD programmes:

Bioprocess Engineering
Catalysis and Catalytic Processing
Hydrometallurgical Engineering
Minerals Beneficiation

Research Entities:
Centre for Bioprocess Engineering Research
Catalysis Institute
Centre for Minerals Research
CREE - Centre for Research in Engineering Education
Crystallisation and Precipitation Research Unit
DST-NRF Centre of Excellence in Catalysis
Minerals to Metals
National Hydrogen Catalysis Competence Centre

The Department of Chemical Engineering is situated in the New Chemical Engineering Building, which is on Upper Campus. Access to the Building is from South Lane, off Mandela Circle.

Website: www.chemeng.uct.ac.za

Staff

Professor and Head of Department:
E van Steen, MSc(Eng) Eindhoven Dr.-Ing. Karlsruhe FSAICHE FSAAE AFICheM

Professors:
D Bradshaw, BSc(ChemEng), PhD Cape Town
JM Case, BSc(Hons) Stell HDE MSc Cape Town MEd Leeds MSc Cape Town PhD Monash MASSA
M Claeyss, Dipl.Ing (Chem Eng) Dr. –Ing. Karlsruhe
DA Deglon, BSc(Eng) Witwatersrand MBA PhD Cape Town MSAIMM
JCQ Fletcher, BSc(Eng)Chem PhD Cape Town MACS FSAAE
STL Harrison, BSc(Hons) Cape Town PhD Cantab MSAICHE SASM FSAIMM FSAAE ASSAf FWISA
PJ Kooyman, Drs Chemie (MSc) Leiden University, PhD ChemE Delft University of Technology, MSAICHE, KNCV, DZA, FEZA, IZA, CHG, AMS.
A Mainza, BSc(Eng)Chem UNZA PhD Cape Town
KP Möller, BSc(Eng)Chem PhD Cape Town
J Petersen, BSc(Eng)Chem Witwatersrand PhD Cape Town MSAIMM (Director of Postgraduate Studies)
HB von Blottnitz, PrEng BSc(Eng)Chem Cape Town BSc(Hons) UNISA MSc(Eng) Cape Town
Dr.-Ing. RWTHAachen MSAICHE

Associate Professors:
JL Broadhurst, BSc(Hons) MSc Port Elizabeth PhD Cape Town
A Isafiade, BSc(Hons) Ilorin MSc(ChemEng) Ife PhD Cape Town AMICheM
Emeritus Professors:
CT O’Connor, PrEng BSc UNISA STD Natal BSc(Hons) PhD Cape Town DEng Stell FSAIMM FSAIChe FSAAE FRSSAf

Honorary Professor:
I Govender, BSc UDW BSc(Hons)Physics PhD Cape Town HDE UNISA
MJ Nicol, BSc(Hons) PhD Witwatersrand FSAIMM, FAUSIMM
JG Petrie, CEng BSc(Eng)Chem Cape Town MSc(Chem Eng) Houston PhD Cape Town FIChemE

Honorary Associate Professor:
B Cohen, BSc (Eng) Chem Cape Town PhD Cape Town.

Adjunct Professor:
P Dempsey, NHD Metallurgy Wits Technicon BSc UNISA MDP UNISA
AS Lambert, BSc(Hons) Extractive Metallurgy Glasgow, FSAIMM
JW Mann, BSc(Eng) Extractive Metallurgy Witwatersrand MBL UNISA
R Schouwstra, BSc(Hons) NWU MSc Johannesburg DSc NWU
MH Solomon, BSc(Eng)Mining, Witwatersrand, FSAIMM, FIQ, Mine Manager’s Certificate of Competency (Metalliferous), MDP (Mining) South Africa
WA van Dyk, BEng (Chemical, Extractive Metallurgy) PhD Stell
DW Wright, BSc(Eng)Chem Natal MSAIChe FSAAE

Adjunct Associate Professor:
PJ Notten, BSc(Eng)Chem PhD Cape Town

Senior Lecturers:
L Bbosa, BSc(Eng)Elec-Mech MSc(Chem Eng) PhD Cape Town MSAIMM
MA Fagan-Endres, BSc(Eng)Chem Cape Town PhD Cantab
HR Heydenrych, BSc(Eng)Chem MSc(Eng) Cape Town
PBJ Levecque, MSc(Eng) PhD Leuven (Director of Undergraduate Studies)
S Tai, BSc(Hons)UMIST MSc PhD Delft

Lecturers:
T Rampai, BSc(Hons) MSc(Materials Engineering) Cape Town

Contract Lecturers
E Govender-Opitz, BSc(Eng)Chem PhD Cape Town
A Mabentsela, BSc(Eng)Chem Cape Town MEng(Extractive Metallurgy) Stell
MS Manono, BSc(Eng)Chem MSc(Eng) Cape Town PGDBM Regenesys, AMIChe FSAIMM
MW van Heerden, BSc(Eng)Chem, MSc(Eng) Cape Town

Honorary Research Associates:
MJ Griffiths, BSc(Med) (Hons)MSc PhD Cape Town
MA Petersen, BSc MSc Cape Town PhD Cantab
RP van Hille, BSc MSc PhD Rhodes

Chief Research Officers:
MC Harris, BSc(Eng)Chem MSc(Eng) Cape Town

Senior Research Officers:
M Becker, BSc(Hons) MSc Geology Cape Town PhD Pretoria
R Brosius, BSc(Eng) (RUC Antwerpen) MSc (Eng) PhD Leuven
KC Corin, BSc(Hons) PhD Cape Town
NF Fischer, Dipl.-Ing.(Chem Eng) Karlsruhe PhD Cape Town
BJ McFadzean BSc(Hons) MSc Port Elizabeth PhD NMMU
APP van der Westhuizen, BEng Stell MSc Cape Town

Research Officers:
PA Bepswa, BSc Chem Eng Zimbabwe PhD Cape Town
RJ Huddy BSc(Hons) PhD Cape Town
N Hussain BSc(Eng)Chem MSc Cape Town
M Johnstone-Robertson, BSc(Eng)Chem PhD Cape Town
NTJ Luchters, BTech Leiden MSc(Eng) Cape Town
JG Wiese NatDip CPUT MSc Cape Town

Chief Technical Officers:
K Hauslaib BSc(Eng)Mechatronics Cape Town
HJ Macke, Dip Mechanical Engineering Technician, Germany

Technical Officers:
DJ Bramble
RB Cupido, BTech(Chem Eng), MTech CPUT
G Kaufmann, BTech CPUT MTech NMMU
WP Koorts, BTech(Chem Eng), MTech CPUT
CA Le Roux, BTech(Chem Eng) UNISA

Senior Scientific Officers:
GC Edwards, BSc(Eng)Chem Cape Town, MSc Cape Town
AS Geldenhuys, BEng(Chem) Stell
MC Richter, BSc(Physics) Cape Town BSc(Hons) Cape Town MSc(Theoretical Physics) Cape Town
Z Le Riche, ND(Analytical Chemistry) CPUT
M Lisso, BSc(Eng)Chem MSc Cape Town
GA Yorath, BSc(Hons) Mineral Processing Technology Cornwall

Scientific Officers:
RE Van Schalkwyk, BTech(Chem Eng) CPUT

Analytical Laboratory Manager:
S La Grange, BTech (Chemistry) CPUT

Department Laboratory Manager:
A Mentoor, BSc(Hons) MSc Stell

Department Manager
SI Pillay

Building Supervisor:
E Matthews

Administrative Staff:
J Broadley (Administrative Assistant)
N Dili (Receptionist)
B Cloete (Undergraduate Administrator)
B Davids (Postgraduate Administrator)
N Davids (Finance Assistant)
A Warrin (Finance Assistant)
The Department offers both undergraduate and postgraduate programmes in Chemical Engineering. The undergraduate programme draws top school leavers from South Africa and further afield, with an annual intake of approximately 140 students. Graduates from this programme are highly sought-after in a wide variety of industries. The Department has dynamic research programmes and students who have obtained satisfactory results in their undergraduate courses are encouraged to return for postgraduate study. The Department's research activities are at present centered on:

- Biological leaching of mineral ores, with work concentrated on the fundamental processes involved;
- Bioprocess engineering focused on biotransformation, bioreactor design, process kinetics, novel bioprocesses and the recovery of biological products;
- Catalysis research aimed at synthesis, characterisation and modelling of heterogeneous catalysts and their application in a variety of reactions and reactor types;
- Crystallization and precipitation research focusing on metal recovery in mineral processing and metal removal for environmental protection and crystallization for water treatment;
- Educational research aimed at improving the quality of undergraduate teaching and learning;
- Environmental process engineering, both at a conceptual and a practical level;
- Hydrogen and fuel cell technologies focusing on fuel processing catalysis and devices, electrodes development and fuel cell and stack development;
- Hydrometallurgy for metal extraction;
- Minerals processing research focused on milling, classification and flotation of ores;
- Process modelling and optimization; and
- Process synthesis featuring the application of pinch technology to heat and mass transfer systems as well as the control of process systems.

Postgraduate Programmes

Master's Programmes

MSc in Engineering specialising in Bioprocess Engineering
[EM024CHE01]

Professor and Convener:
STL Harrison, BSc(Hons) Cape Town PhD Cantab MSAIChe SASM FSAAE ASSAf

Core Courses

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE5082Z</td>
<td>Dissertation Preparation (in 1st year)</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>CHE5002W</td>
<td>Dissertation Chemical Engineering (in 2nd year)</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td>CHE5051Z</td>
<td>Microbial Physiology & Dynamics#1</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CHE5052Z</td>
<td>Molecular Biology & Catalysis#1</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CHE5070Z</td>
<td>Advanced Bioprocess Engineering</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CHE5049Z</td>
<td>Chemical Engineering Topics for Scientists#2</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CHE5054Z</td>
<td>Biotechnology Laboratory</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CHE5055Z</td>
<td>Research Communication & Methodology</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s Journal Paper</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

#1 core courses for engineering graduates: either CHE5051Z or CHE5052Z.
core courses for life science graduates, but may be replaced by CHE2031F, CHE2035S or CHE3044F or equivalent. Physical Science graduates will complete all or a selection of #1 and #2, dependent on their previous studies. Elective or optional courses: 4 – 12 credits

MSc in Engineering specialising in Catalysis and Catalytic Processing
[EM024CHE01]

Doctor and Convener:
N Fischer Diplom Ingenieur Karlsruhe PhD Cape Town

Core Courses for Chemical Engineering Graduates #1

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE5002W</td>
<td>Dissertation Chemical Engineering</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td>CHE5088Z</td>
<td>Introduction to Heterogeneous Catalysis Research</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CHE5089Z</td>
<td>Characterisation Techniques for Catalysis Research</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>CHE5055Z</td>
<td>Research Communication & Methodology</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CHE5082Z</td>
<td>Dissertation Preparation</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Optional courses</td>
<td></td>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td>Minimum total credits</td>
<td></td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

#1 Students who have completed CHE4067F

Core Courses for Science Graduates #2

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE5002W</td>
<td>Dissertation Chemical Engineering</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td>CHE4067F</td>
<td>Heterogeneous Catalysis</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>CHE5088Z</td>
<td>Introduction to Heterogeneous Catalysis Research</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CHE5089Z</td>
<td>Characterisation Techniques for Catalysis Research</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>CHE5055Z</td>
<td>Research Communication & Methodology</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CHE5082Z</td>
<td>Dissertation Preparation</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Optional courses</td>
<td></td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Minimum total credits</td>
<td></td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

#2 Students who have NOT completed CHE4067F

MSc in Engineering specialising in Hydrometallurgical Engineering
[EM024CHE01]

Professor and Convener:
J Petersen, BSc (Eng) Chem Wits PhD Cape Town MSAIMMs

A candidate for the Master’s in Hydrometallurgical Engineering programme shall complete coursework to the minimum of 60 credits, which includes all core courses and at least one of the elective core courses, listed below.

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE5002W</td>
<td>Dissertation Chemical Engineering</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td>CHE5055Z</td>
<td>Research Communication & Methodology</td>
<td>16</td>
<td>9</td>
</tr>
</tbody>
</table>
Master of Philosophy Specialising in Sustainable Mineral Resource Development

[EM026CHE05]

Professor and Convener:

HB von Blottnitz, PrEng BSc(Eng)Chem Cape Town BSc(Hons) UNISA MSc(Eng) Cape Town Dr.-Ing. RWTH Aachen MSAIChE

Mining in Africa, as in the rest of the world, has changed from simply balancing production targets with cost control to a complex set of interrelationships including safety, health, the environment, sustainable development and proactive stakeholder management. This programme is aimed at providing an interdisciplinary postgraduate qualification that highlights the critical factors of sustainable development in the context of mining and minerals processing in Africa; including an understanding of, and a sensitivity and progressive approach to, managing and interacting with communities, environmental challenges, safety cultures, health-related issues and regulatory frameworks.

This trans-disciplinary Master of Philosophy (MPhil) Degree is offered through the Minerals to Metals Research Initiative within the Department of Chemical Engineering at UCT.

Students will complete the research component of the degree at UCT under supervision, and complete course work at UCT (including the UCT Graduate School of Business), the University of Stellenbosch and the University of Zambia. Credit and exemption will be granted for courses taken at other institutions, as shown below.

A candidate for the Master’s specialising in Sustainable Mineral Resource Development shall complete coursework to the minimum of 60 credits, which includes all core courses listed below, and a 120 credit dissertation.

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE5002Z</td>
<td>Master’s Dissertation: Chemical Engineering</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td>CHE5087Z</td>
<td>Research Methodology</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CHE5082Z</td>
<td>Dissertation Preparation</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s Journal Paper</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>CHE4054Z*</td>
<td>Environmental Stewardship in Mining & Minerals Beneficiation</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>CHE4055X*</td>
<td>Practical Training in Sustainable Development</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>CHE4056Z*</td>
<td>Special Topics in Sustainable Development</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>GSB4264Z</td>
<td>Strategic Engagement Practice</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

Professor and Convener:

HB von Blottnitz, PrEng BSc(Eng)Chem Cape Town BSc(Hons) UNISA MSc(Eng) Cape Town Dr.-Ing. RWTH Aachen MSAIChE

Mining in Africa, as in the rest of the world, has changed from simply balancing production targets with cost control to a complex set of interrelationships including safety, health, the environment, sustainable development and proactive stakeholder management. This programme is aimed at providing an interdisciplinary postgraduate qualification that highlights the critical factors of sustainable development in the context of mining and minerals processing in Africa; including an understanding of, and a sensitivity and progressive approach to, managing and interacting with communities, environmental challenges, safety cultures, health-related issues and regulatory frameworks.

This trans-disciplinary Master of Philosophy (MPhil) Degree is offered through the Minerals to Metals Research Initiative within the Department of Chemical Engineering at UCT.

Students will complete the research component of the degree at UCT under supervision, and complete course work at UCT (including the UCT Graduate School of Business), the University of Stellenbosch and the University of Zambia. Credit and exemption will be granted for courses taken at other institutions, as shown below.

A candidate for the Master’s specialising in Sustainable Mineral Resource Development shall complete coursework to the minimum of 60 credits, which includes all core courses listed below, and a 120 credit dissertation.

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE5002Z</td>
<td>Master’s Dissertation: Chemical Engineering</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td>CHE5087Z</td>
<td>Research Methodology</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CHE5082Z</td>
<td>Dissertation Preparation</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s Journal Paper</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>CHE4054Z*</td>
<td>Environmental Stewardship in Mining & Minerals Beneficiation</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>CHE4055X*</td>
<td>Practical Training in Sustainable Development</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>CHE4056Z*</td>
<td>Special Topics in Sustainable Development</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>GSB4264Z</td>
<td>Strategic Engagement Practice</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>
Total credits per year ... 180

* indicates core courses offered elsewhere for which credit and exemption will be granted.

University of Zambia (School of Mines)
‘Environmental Stewardship in Mining & Minerals Beneficiation’ (credit and exemption CHE4054Z)

University of Stellenbosch (Sustainability Institute)
‘Advanced Introduction to Sustainable Development’ (credit and exemption CHE4056Z)

Optional Courses for all Postgraduate Programmes

In addition to the courses listed below, the core courses of the three programmes above may be used as optional courses in the other programmes.

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE5022Z</td>
<td>Introduction to Catalysis</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CHE5027Z</td>
<td>Advanced Reaction Kinetics in Heterogeneous Systems</td>
<td>8</td>
<td>09</td>
</tr>
<tr>
<td>CHE5030Z</td>
<td>Advanced Engineering Statistics I</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CHE5040Z</td>
<td>Fuels & Chemicals from Oil</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>CHE5041Z</td>
<td>Instrumental Analysis Part A - General Measurement</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>CHE5042Z</td>
<td>Instrumental Analysis Part B - Chromatography</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>CHE5043Z</td>
<td>Instrumental Analysis Part C - Spectroscopy</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>CHE5045Z</td>
<td>Fuels & Chemicals from Coal & Syngas</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>CHE5047Z</td>
<td>Molecular Modelling</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CHE5048Z</td>
<td>Crystallization and Precipitation</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>CHE5056Z</td>
<td>Bioleaching of Sulphide Minerals</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CHE5051Z</td>
<td>Microbial Physiology and Dynamics</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CHE5052Z</td>
<td>Molecular Biology and Biocatalysis</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CHE5054Z</td>
<td>Biotechnology Laboratory</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CHE5061Z</td>
<td>Advanced Topics in Reduction</td>
<td>8</td>
<td>09</td>
</tr>
<tr>
<td>CHE5064Z</td>
<td>Sustainability in Chemical Engineering</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CHE5069Z</td>
<td>Advanced Thermodynamics and Separation Processes</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CHE5070Z</td>
<td>Advanced Bioprocess Engineering</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CHE5072Z</td>
<td>Fundamentals of Process Modelling</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>CHE5078Z</td>
<td>Advanced Numerical Methods for Engineers</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CHE5079Z</td>
<td>Integrated Analysis of Mineral Beneficiation Systems</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CHE5083Z</td>
<td>Translating Technology from the Laboratory to the Marketplace</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CHE5085Z</td>
<td>Hydrogen Technology</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CHE5086Z</td>
<td>Electrochemical Characterisation Techniques for Fuel Cells</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>CIV5101F</td>
<td>Wastewater Treatment Part I</td>
<td>32</td>
<td>09</td>
</tr>
<tr>
<td>EEE4103F</td>
<td>Nuclear Power Sources</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>END5049Z</td>
<td>Research Communication & Methods</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>MEC5035Z</td>
<td>Project Management</td>
<td>20</td>
<td>09</td>
</tr>
</tbody>
</table>
Doctoral Programmes

Doctor of Philosophy
[ED001CHE01]
ED001 Doctor of Philosophy is a Research Degree

Core Course

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE6000W</td>
<td>Thesis</td>
<td>360</td>
<td>10</td>
</tr>
</tbody>
</table>

Course descriptions are set out in the section Courses Offered. The course code abbreviation for Chemical Engineering is CHE.

Course Outlines

CHE4054Z ENVIRONMENTAL STEWARDSHIP IN MINING & MINERALS BENEFICIATION
12 NQF credits at HEQSF level 8
Convener: Professor H von Blottnitz
Course outline:
Mining in Africa, as in the rest of the world has an adverse impact on the environment. Understanding environmental challenges relevant to the mineral industry, with emphasis on the relationship between mining and minerals beneficiation activities and environmental impact categories is cardinal. In this course students will be introduced to environmental issues related to mining industries as well as environmental legislation, guidelines and best practices. It will provide exposure to the mining world and will offer students the opportunity to conduct case studies on real mine sites.

DP requirements: None
Assessment: Group assignments (20%), individual case-study (20%), individual assignment (60%). *Entrance is limited to the MPhil specialising in Sustainable Mineral Resource Development*

CHE4055X PRACTICAL TRAINING IN SUSTAINABLE DEVELOPMENT
0 NQF credits at HEQSF level 8
Convener: Professor H von Blottnitz
Course outline:
This course is grounded in the realizations that sustainable development requires professionals to be able to negotiate disciplinary truth boundaries so as to minimize externalization of costs and damages to 3rd parties or future generations; and requires an understanding of the complexity of coupled social-ecological systems, which can only partly be learnt in the classroom. This course aims to ground learning not just in theory but also in the evolving practice of sustainable development in Africa. Students are requested to register for a practical training period of two weeks or more, with an accredited host, resulting in a reflective report.

DP requirements: None
Assessment: Coursework 100% *Entrance is limited to the MPhil specialising in Sustainable Mineral Resource Development*

CHE4056Z SPECIAL TOPICS IN SUSTAINABLE DEVELOPMENT
16 NQF credits at HEQSF level 8
Convener: Professor S Harrison
Course outline:
This course focuses on the rise to global prominence of the challenge of sustainability in general and sustainable development in particular. Course topics include: the meaning of sustainability and sustainable development; key elements of the environmental crisis; key elements of the global economy and the nature of inequality; an introduction to deep ecology; fault lines and application.

DP requirements: None

Assessment: Coursework 100%

Entrance is limited to the MPhil specialising in Sustainable Mineral Resource Development

CHE5000W
MASTERS DISSERTATION IN CHEMICAL ENGINEERING
180 NQF credits at HEQSF level 9

Convener: None

Course entry requirements: CHE5055Z

Course outline:
The dissertation should incorporate any or all of the following: design of all or part of an engineering project to a specification involving advanced concepts and theoretical principles; a research project of a theoretical or practical nature; a critical review of a specified topic based upon a comprehensive search of the literature or available data; development of an item of equipment or a technique involving novel features or advanced design; or any other study acceptable to the Faculty.

DP requirements: None

Assessment: Written work counts 100%.

CHE5002W
DISSERTATION CHEMICAL ENGINEERING
120 NQF credits at HEQSF level 9

Convener: None

Course entry requirements: CHE5055Z, DP in CHE5082Z.

Course outline:
The dissertation should incorporate any or all of the following: design of all or part of an engineering project to a specification involving advanced concepts and theoretical principles; a research project of a theoretical or practical nature; a critical review of a specified topic based upon a comprehensive search of the literature or available data; development of an item of equipment or a technique involving novel features or advanced design.

DP requirements: None

Assessment: Written work counts 100%.

CHE5022Z
INTRODUCTION TO CATALYSIS
16 NQF credits at HEQSF level 9

Convener: Professor E van Steen

Course entry requirements: BSc (Eng) or equivalent four year BSc (Hons)

Course outline:
This advanced introduction to catalysis includes: basic principles in heterogeneous catalysis; diffusion and adsorption; catalyst testing (reactions, product analysis); catalyst preparation (zeolites; metal-based catalysts); acid catalysed reactions; metal catalysed reactions; bi-functional catalysis; and oxidation catalysis.

DP requirements: None

Assessment: Coursework 30%, Examination 70%

CHE5030Z
ADVANCED ENGINEERING STATISTICS I

Course not offered in 2016

8 NQF credits at HEQSF level 9

Convener: Professor K Möller

Course entry requirements: BSc (Engineering) (Chemical Engineering)
Course outline:
This course covers advanced engineering statistics. Topics include: Conducting a physical experiment, random variables and variation, making inference on random variables, normal distribution, confidence intervals. Design and analysis of experiments: sequential design, factorial designs, fractional factorial designs, response surface designs, mixture designs, optimal design. Nonlinear model fitting, nonlinear optimal design, application to laboratory and industrial data.

DP requirements: Submission of all projects and/or assignments with all questions/sections duly attempted

Assessment: 50% weighted average of all projects and assignments

CHE5033Z APPLIED MATHEMATICS & MODELING II
8 NQF credits at HEQSF level 9

Course outline:
This course covers applied mathematics and modelling. Topics include: non-linear multivariable parameter estimation, formulation of objective functions, optimisation (NLP), single variable, multivariable, BFGS, Nelder and Mead, Levenberg-Marquardt, sequential quadratic programming (QP&SQP), mix-integer non-linear optimisation (MINLP), unconstrained, constrained, inequalities, Lagrange multipliers, sensitivity analysis, and examples.

Assessment: Projects and assignments (50% for each project and assignment to pass course).

CHE5047Z INTRODUCTION TO MOLECULAR MODELING
8 NQF credits at HEQSF level 9

Course outline:
This course develops an advanced understanding of molecular modelling of solids and fluid-phase components of interest to catalysis and other fields. The course provides background theoretical understanding of molecular modelling as well as subject specific experience with the use of the leading commercial modelling software. Included are the building of molecular structures ab initio, the use of data libraries as well as the use of various force-field energy minimisation techniques.

DP requirements: None

Assessment: Examination 2 hours.

CHE5048Z CRYSTALLISATION AND PRECIPITATION
Course not offered in 2017
12 NQF credits at HEQSF level 9

Convener: Professor AE Lewis

Course outline:
Crystallisation and precipitation are both purification and separation processes, and takes place through a solid phase being created from a liquid phase. The course covers crystallization methods and supersaturation, particle size distribution (PSD), crystal morphology, mother liquor inclusions, uptake of impurities, primary nucleation, growth mechanisms and growth rate expressions, the population balance equation, agglomeration and special considerations for precipitation.

DP requirements: None

Assessment: Assignments and Projects

CHE5049Z CHEMICAL ENGINEERING TOPICS FOR SCIENTISTS
Not offered to Chemical Engineering graduates
16 NQF credits at HEQSF level 9

Course outline:
This course is designed for graduates from disciplines other than chemical engineering. Topics include: material and energy balances; reactor configuration; reaction kinetics; fluid flow in pipe reactors and particulate systems. Solid-liquid separations; and basic mass transfer.

DP requirements: None

Assessment: Examination 3 hours, assignments.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Offered</th>
<th>Credits</th>
<th>HEQSF Level</th>
<th>Convener</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE5051Z</td>
<td>MICROBIAL PHYSIOLOGY AND DYNAMICS</td>
<td>2017</td>
<td>8</td>
<td>9</td>
<td>Professor STL Harrison</td>
</tr>
<tr>
<td>CHE5052Z</td>
<td>MOLECULAR BIOLOGY AND BIOCATALYSIS</td>
<td>2017</td>
<td>8</td>
<td>9</td>
<td>Dr CJ Fenner</td>
</tr>
<tr>
<td>CHE5054Z</td>
<td>BIOTECHNOLOGY LABORATORY</td>
<td>2017</td>
<td>8</td>
<td>9</td>
<td>Dr RP van Hille</td>
</tr>
<tr>
<td>CHE5055Z</td>
<td>RESEARCH COMMUNICATION & METHODOLOGY</td>
<td>2017</td>
<td>16</td>
<td>9</td>
<td>Professor STL Harrison</td>
</tr>
</tbody>
</table>

Course Outline:

CHE5051Z: This course in microbial physiology and dynamics covers: fundamentals of microbiology, macromolecules and metabolism; metabolic engineering; microbial media and culture maintenance; and gene expression and control.

Assessment: Examination 3 hours, assignments.

CHE5052Z: This course in molecular biology and biocatalysis covers: gene cloning and expression; genetically engineered organisms in processes; process constraints; regulatory constraints and GMO's; microbial species identification using molecular biology; definition of biocatalysis; enzymes as biocatalysts; enzyme kinetics; enzyme applications in biocatalysis; and biotransformations using whole cell systems.

Assessment: Attendance at 75% of lectures, submission of all assignments.

CHE5054Z: This course aims to develop an understanding of basic microbiology, bioreactor technology, brewing, protein extraction and electrophoresis, DNA extraction, PCR, fluorescence microscopy, enzyme kinetics, and biotransformations.

Assessment: Assignments and practical examination.

CHE5055Z: The aim of this course is to provide postgraduate students with the competency to execute meaningful research in a structured way, to critically analyse the results of this research and to communicate these results effectively. The course topics include: research philosophy, research planning, hypothesis development and research methodology; literature review skills; research ethics; research communication and related technical skills; experimental practice; structuring, writing and presentation of scientific outputs. The assignments include: oral presentation of seminars, scientific and technical writing tasks, experimental design tasks and literature review. The final examination comprises the compilation and presentation of the final report which is a complete research proposal.

Assessment: Completion of all assignments and the final report (100%).
CHE5056Z BIOLEACHING OF SULFIDE MATERIALS
Course not offered in 2017
8 NQF credits at HEQSF level 9
Convener: Professor J. Petersen

Course entry requirements: BSc (Eng) or BSc (Hons) or equivalent

Course outline:
This course in bioleaching of sulphide minerals covers: the scope of bioleaching and its historical developments; industrial applications: dump, heap and tank leaching and the use of thermophiles; microorganisms: microbial ecology of bioleach systems; mechanism and kinetics: chemical reaction mechanisms; kinetics and rate equations; and current research activities and developmental challenges.

DP requirements: None

Assessment: Examination (100%).

CHE5057Z FUNDAMENTALS OF HYDROMETALLURGY
Course not offered in 2017
12 NQF credits at HEQSF level 9
Convener: Professor J. Petersen

Course entry requirements: BSc (Eng) or BSc (Hons) or equivalent

Course outline:
This course in the fundamentals of hydrometallurgy develops an advanced understanding of aqueous thermodynamics; kinetics of heterogeneous reactions; and material and energy balances in hydrometallurgy.

DP requirements: None

Assessment: Examination 50% and year mark 50%.

CHE5058Z LEACHING HYDROMETALLURGY
Course not offered in 2017
12 NQF credits at HEQSF level 9
Convener: Professor J. Petersen

Course entry requirements: BSc (Eng) or BSc (Hons) or equivalent

Course outline:
This course develops an understanding of advanced topics in leaching and includes the theory and applications in leaching practice.

DP requirements: None

Assessment: Examination 50% and year mark 50%.

CHE5059Z HYDROMETALLURGICAL SEPARATION PROCESSES
Course not offered in 2017
12 NQF credits at HEQSF level 9
Convener: Professor J Petersen

Course entry requirements: BSc (Eng) or BSc (Hons) or equivalent

Course outline:
This course in hydrometallurgical separation processes covers: introduction to principles and applications of solvent extraction, precipitation, electrowinning adsorption and solid-liquid separation in hydrometallurgical processes.

DP requirements: None

Assessment: Examination 50% and year mark 50%.

CHE5060Z SOLVENT EXTRACTION
Course not offered in 2017
8 NQF credits at HEQSF level 9
Convener: Professor J Petersen
Course entry requirements: BSc (Eng) or BSc (Hons) or equivalent
Course outline:
This advanced course in solvent extraction develops an advanced understanding of practice and engineering; modelling.
DP requirements: None
Assessment: Examination and year mark.

CHE5062Z ELECTROWINNING/REFINING: PRACTICE, MODELING & CONTROL
Course not offered in 2017
8 NQF credits at HEQSF level 9
Convener: Professor J Petersen
Course entry requirements: BSc(Eng) or BSc (Hons) or equivalent
Course outline:
This advanced course in electrowinning and -refining covers: chemical process design, engineering and operation; chemical process modelling; and process control.
Assessment: Examination 50% and year mark 50%.

CHE5063Z ADVANCED TOPICS IN ADSORPTION AND ION EXCHANGE
Course not offered in 2017
8 NQF credits at HEQSF level 9
Convener: Professor J Petersen
Course entry requirements: BSc (Eng) or BSc (Hons) or equivalent
Course outline:
This course includes advanced topics in adsorption and ion exchange. Topics include: scope of adsorption and ion exchange and their historical development; theory: adsorption and ion exchange process systems engineering; industrial applications: and modelling and control.
DP requirements: None
Assessment: Examination 50% and year mark 50%.

CHE5064Z SUSTAINABILITY IN CHEMICAL ENGINEERING
Course not offered in 2017
8 NQF credits at HEQSF level 9
Convener: Professor STL Harrison
Course entry requirements: BSc (Eng) or BSc (Hons) degree or equivalent
Course outline:
Sustainability is fast becoming a major factor in decision making in most industries employing chemical engineering graduates. Since the IChemE and its sister associations signed the London Communiqué in 1997, sustainability has become understood as a key design and operation criterion for chemical engineers to consider. This course seeks to provide graduate students with an awareness of the issues surrounding a sustainable process industry and an appreciation for its importance. The course will examine the central role of chemical engineering in achieving balance amongst economic, environmental, and social benefits and impacts for projects conducted by companies operating in the oil, chemicals, minerals and energy sectors, and will address related challenges of intensive agriculture and provision of water. It seeks to go further to provide a framework and a set of tools which will assist the process engineer in providing rational input in terms of sustainability into decision making, with quantification wherever possible.
DP requirements: None
Assessment: Examination and assignments.
CHE5069Z ADVANCED THERMODYNAMICS AND SEPARATION

Course not offered in 2017

8 NQF credits at HEQSF level 9

Course entry requirements: BSc(Eng).

Course outline:
This course aims to develop an understanding of advanced thermodynamics & separation processes. Topics include: multiphase equilibria: equations of state, activity coefficient models, gas-solid and liquid-solid systems, Gibbs free energy minimisation. Separations technology: azeotropes, residue curve/distillation curve analysis, complex separations, membranes, adsorption, reactive separations. Multi-component mass transfer: application of Maxwell-Stefan theory to separation systems.

DP requirements: None

Assessment: Projects and assignments (50% for each project and assignment to pass course).

CHE5070Z ADVANCED BIOPROCESS ENGINEERING

16 NQF credits at HEQSF level 9

Convener: Professor STL Harrison

Course entry requirements: BSc(Eng) or equivalent four year BSc(Hons) degree.

Course outline:

DP requirements: Satisfactory completion of all projects and assignments.

Assessment: Examination 3 hours, projects and assignments.

CHE5071Z APPLIED NUMERICAL ANALYSIS IN BIOCHEMICAL SYSTEMS

Course not offered in 2017

8 NQF credits at HEQSF level 9

CHE5072Z FUNDAMENTALS OF PROCESS MODELING

Course not offered in 2017

4 NQF credits at HEQSF level 9

Course outline:
This advanced course covers the fundamentals of process modelling. Topics include: micro-, meso-, macro-scale modelling; population balance modelling; dynamics and stability of chemical systems.

DP requirements: Attendance 70%.

Assessment: Project and/or examination.

CHE5078Z NUMERICAL METHODS FOR ENGINEERS

Course not offered in 2017

16 NQF credits at HEQSF level 9

Course entry requirements: BSc(Eng), BSc(Hons) with applied mathematics major.

Course outline:
This course in advanced numerical methods for engineers covers: computer arithmetic, linear equations (transformations, SVD), non-linear equations (quasi-newton’s methods, continuation), ODEs (explicit, implicit, BDF, implicit Runge-Kutta), BVPs (collocation, finite differences, shooting method, finite elements), DAEs (index, implicit solvers), PDEs (collocation, finite differences, finite elements, iterative methods), model regression (leasts squares, variance, boostrap, parameter estimation), and parametric sensitivity analysis (transient, steady state).

DP requirements: None

Assessment: Projects and assignments (50% for each project and assignment to pass course).
CHE5082Z DISSERTATION PREPARATION

DP requirement for entry to CHE5002W.

0 NQF credits at HEQSF level 9

Co-requisites: CHE5055Z

Course outline:
The aim of this course is to allow a student to undertake preparatory work for the 120 credit dissertation (CHE5002W). Work required may include ensuring that research infrastructure (e.g. apparatus etc.) is or will be in place, setting up of models, collection of data. The student should maintain regular contact with his/her supervisor in order to show evidence of suitable progress towards these aims. The supervisor must indicate satisfactory fulfilment of the course aims prior to the student proceeding to the dissertation.

DP requirements: None

CHE5083Z TRANSLATING TECHNOLOGY FROM THE LABORATORY TO THE MARKETPLACE

8 NQF credits at HEQSF level 9

Convener: Professor STL Harrison

Course entry requirements: BSc (Eng) or BSc (Hons) or equivalent

Course outline:
This course aims to develop an understanding of how to translate technology from the laboratory to the marketplace. Topics covered include technology commercialisation; intellectual property; start-up companies (structure, resourcing); entrepreneurial resources; introduction to entrepreneurial finance and funding; business models specific to biotechnology; understanding the components of a business plan; and market research.

DP requirements: Satisfactory completion of 80% assignments

Assessment: Year mark.

CHE5086Z ELECTROCHEM CHARACTISATION TECHNIQUES FOR FUEL CELLS

4 NQF credits at HEQSF level 9; block release.

Convener: P Levecque

Course entry requirements: BSc (Eng) or equivalent four years BSc (Hons)

Course outline:
Basics of electrochemistry: electrode reactions, electron transfer, double layer, design of experiment. Platinum as electrocatalyst: behaviour in bulk and as nanoparticle. The role of carbon and other supports for fuel cell catalysts. Theoretical and practical aspects of cyclic voltammetry, electrochemical impedance spectroscopy, rotation disk electrode, polarisation curve, current interrupt and linear sweep voltammetry. Overview of selected physical/chemical characterisation techniques and their application in fuel cell research.

DP requirements: None

Assessment: Coursework 30%, Examination 70%

CHE5087Z RESEARCH METHODOLOGY

16 NQF credits at HEQSF level 9; block release.

Convener: Prof S Harrison

Course outline:
This course aims to provide postgraduate students with competency to execute meaningful research in a structured way, to critically analyse the results of this research and to communicate these results effectively. To achieve this, the course topics include research philosophy; research planning, hypothesis development and research methodology; literature review skills; research ethics; research communication and related technical skills; structuring, writing and presentation of research outputs.
Entrance is limited to students registered for the M Phil specialising in Sustainable Mineral Resource Development offered by the University of Cape Town and the equivalent Master of Mineral Science Degree in Sustainable Mineral Resources Development, offered by the University of Zambia.

DP requirements: None
Assessment: Coursework 100%

CHE5088Z INTRODUCTION TO HETEROGENEOUS CATALYSIS RESEARCH
8 NQF credits at HEQSF level 9
Convener: Dr Nico Fischer
Course entry requirements: BSc Honours in Science or BSc (Eng) or equivalent.
Co-requisites: None
Course outline:
This course aims to facilitate the connection between high level theory and practical application, for new MSc students in the field of heterogeneous catalysis research. Included are safety aspects specific to laboratories in the Centre for Catalysis Research, the design of test units (including material section, valve design, and temperature/pressure control), and the preparation of various types of heterogeneous catalysts.
DP requirements: Pass presentation on experimental plan for heterogeneous catalysis preparation practical (pass/fail principle, no grades).
Assessment: Written report on heterogeneous catalyst preparation practical (40%); Written exam on course including safety aspects, planning/design/operation of rigs and heterogeneous catalysis preparation (60%).

CHE5089Z CHARACTERIZATION TECHNIQUES FOR CATALYSIS RESEARCH
12 NQF credits at HEQSF level 9
Convener: Dr Nico Fischer
Course entry requirements: BSc Honours in Science or BSc (Eng) or equivalent.
Co-requisites: None
Course outline:
This course aims to facilitate the connection between high level theory and practical application for new MSc students in the field of heterogeneous catalysis characterization techniques. It includes common techniques available in or associated with the laboratories in the Centre for Catalysis Research such as temperature programmed techniques, elemental analysis methods, electron microscopy, X-ray and light based techniques (i.e. Raman and infra-red spectroscopy), gas chromatography and the introduction of more specialized methods such as X-ray absorption, solid state NMR and surface science techniques.
DP requirements: None
Assessment: Written reports on different practicals (each 10%, total 40%); Written exam on course covering all introduced characterization techniques, both in theoretical background as well as data collection and analysis (60%).

CHE6000W PHD IN CHEMICAL ENGINEERING
360 NQF credits at HEQSF level 10
Co-requisites: CHE5055Z
Course outline:
A PhD thesis is required to be an original, coherent and consistent body of work which reflects the candidate’s own efforts. The thesis may not be more than 80 000 words. A candidate will undertake research, and such advanced coursework as may be required, under the guidance of a supervisor or supervisors appointed by Senate
DP requirements: None
Assessment: Written work counts 100%.
CHE6001W PHD IN ENGINEERING EDUCATION
360 NQF credits at HEQSF level 10
Convener: Professor J Case
Co-requisites: CHE5055Z
Course outline:
A PhD thesis is required to be an original, coherent and consistent body of work which reflects the candidate’s own efforts. The thesis may not be more than 80 000 words. A candidate will undertake research, and such advanced coursework as may be required, under the guidance of a supervisor or supervisors appointed by Senate.
DP requirements: None
Assessment: Written work counts 100%.

CHE9003Z INTERNATIONAL AFFILIATE 6-12 M
0 NQF credits at HEQSF level 0

END5049Z RESEARCH COMMUNICATION & METHODOLOGY
Administered by the Department of Chemical Engineering.
16 NQF credits at HEQSF level 9; 1 Final Report.
Course outline:
The aim of this course is to provide postgraduate students with the competency to execute meaningful research in a structured way, critically analyse the results of this research and to communicate these results effectively. The course topics include: research philosophy, research planning, hypothesis development and research methodology; literature review skills; research ethics; research communication and related technical skills; experimental practice; structuring, writing and presentation of scientific outputs. The assignments include: oral presentation of seminars, scientific and technical writing tasks, experimental design tasks and literature review. The final examination comprises the compilation and presentation of the final report which is a complete research proposal.
DP requirements: Completion of all assignments and the final report.
Assessment: Assignments and final report.

END5050X MASTERS JOURNAL PAPER REQUIREMENT
0 NQF credits at HEQSF level 9

Course outline:
The aim of submitting a research paper for the masters’ degree is to develop an understanding of what is required for the publication of research findings. To this end a candidate shall submit a summary of the key aspects of the dissertation, presented in the form of a paper which is, potentially, of publishable standard, approved by a Panel of Assessors. This is a requirement for candidates submitting either a 180 or 120 credit dissertation for the following degrees: MSc in Construction Economics and Management, MSc(Eng), MSc(ProjMan), MPhil, MSc in Property Studies. Refer to the appropriate degree rules.
DP requirements: None
CIVIL ENGINEERING

The Department offers the following Postgraduate Degree Programmes:

Civil Infrastructure Management and Maintenance
Geotechnical Engineering
Structural Engineering and Materials
Transport Studies
Urban Infrastructure Design and Management
Water Quality Engineering

Research Entities:
Centre for Transport Studies
Concrete Materials and Structural Integrity Research Unit
Geotechnical Engineering
Structural Engineering and Mechanics
Urban Water Management Research Unit
Water Quality Engineering

The Department of Civil Engineering is housed in the New Engineering Building, situated on the top terrace of the Upper Campus. This brand new facility is shared with the Department of Chemical Engineering and the Faculty Office.

Staff

Professor and Head of Department:
N P Armitage, PrEng BSc(Eng) Natal MSc(Eng) CapeTown PhD Stell FSAICE FWISA FSAIMunE Mem IAHR Mem IAHS Fellow IWA

Professors:
H Beushausen, Dipl-Ing HAW Hamburg MSc(Eng) PhD Cape Town
GA Ekama, BSc(Eng) PhD Cape Town SFWISA FRSSAf FSAAE MASSAf MWEF MIWA
P Moyo, PrEng BSc(Eng) Zimbabwe MSc(Eng) Newcastle-upon-Tyne PhD Nanyang MSAICE MIABSE
JE van Zyl, PrEng BEng MEng Rand Afrikaans PhD Exeter MASCE, MSAICE, MIWA, FWISA
A Zingoni, PrEng BSc(Eng) Zimbabwe MSc(Eng) London DIC PhD London CEng FStructE FZweIE MASSAf FIABSE FSAAE

Associate Professors:
R Behrens, Pr Pln BA MCRP PhD Cape Town
M Vanderschuren, BSc(Eng) Tilburg MScEng Delft PhD Enschede MSAICE MSASITS
MHP Zuidgeest, MSc(Eng) PhD (Eng) Twente

Emeritus Professor:
MG Alexander, PrEng BSc(Eng) MSc(Eng) PhD Witwatersrand FSAICE FSAAE, MASSAf MICT

Emeritus Associate Professors:
MO de Kock, PrEng BSc(Eng) Cape Town
R Del Mistro, PrEng TRP(SA) BSc(Eng) Diploma TE(IHE) MURPCape Town PhD Pret
RO Heckroodt, MSc DSc Pret Dip Ceram Leeds FSAIMM FI Ceram (UK)
FA Kilner, PrEng MA Oxon MSc(Eng) London DIC
ADW Sparks, PrEng CEng BSc(Eng) Natal MSc(Eng) Witwatersrand MICE FSAICE MOpResSocSAMRoySocSA
Senior Lecturers:
DS Ikumi, PhD Cape Town
D Kalumba, BSc(Eng) Makerere MSc(Eng) Cape Town PhD Newcastle-upon-Tyne
K Mudenda, PrEng BEng Zambia MSc(Eng) Cape Town
DG Randall, PrEng BSc(Eng)Chem PhD Cape Town MSAIChe MWISA MIMWA
S Skatulla, Dipl-Ing Karlsruhe PhD Adelaide

Academic Development Senior Lecturer:
NS Wolmarans, MSc(Eng) Cape Town

Lecturer:
FC Chebet, BSc(Eng) Makerere MSc(Eng) Manchester

Research Officers:
KJ Carden, BSc MSc(Appl Sci) PhD Cape Town
H Schalekamp, BAS BArch MPhil PhD Cape Town

Honorary Research Associates:
E Beukes, PhD Cape Town
V Collis, PrEng PrArch BSc(Eng) Cape Town
S Nhleko, BSc(Eng) MSc(Eng) Cape Town PhD Oxford
LA Kane, BEng Wales(Cardiff) MSc(Eng) Cape Town
M Santhanam, BTech IIT Madras MS Purdue PhD Purdue

Principal Technical Officer:
C J Nicholas

Laboratory Manager/Principal Scientific Officer:
N Hassen

Water Quality Laboratory Manager:
N Thela, NDip Chem Eng MUT BTech Chem Eng DUT

Chief Technical Officer:
A Rule

Senior Technical Officer:
T Mukaddam, ND Civil Eng CPUT

Departmental Manager:
AB Dalwai, BSocSc Cape Town

Administrative Officer - Postgraduate:
R Geswindt

Administrative Officer - Undergraduate:
I Ncube

Research Administrative Staff:
F Seragie
W van der Ross
G Verster
Finance Assistant:
A Courie

Senior Secretary:
C Wright

Laboratory Technical Staff:
L Adams
H Mafungwa
C May
E Witbooi

Workshop Assistant:
M Swayiza

Postgraduate Programmes

Master's Programmes

Master of Science in Engineering specialising in Civil Engineering

The Department of Civil Engineering prepares candidates for the Master of Science in Engineering. Masters degree programmes are offered which comprise different levels of research versus course work, thus allowing students to educate themselves according to their particular strengths and career choices. The majority of courses are block week and cover a variety of topics. The Master of Science in Engineering can be either by dissertation only [EM023] or by coursework (approved by your supervisor) and dissertation [EM024].

EM023 Research Master's by dissertation
[EM023CIV01]

Core Course

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5000W</td>
<td>Dissertation Civil Engineering</td>
<td>180</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Total credits</td>
<td></td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

EM024 Research Master's by coursework and dissertation
[EM024CIV01]

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5000Z</td>
<td>Dissertation Civil Engineering</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Elective courses approved by supervisor</td>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td>CIV5109Z</td>
<td>Dissertation Preparation</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Total credits</td>
<td></td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>
Civil Infrastructure Management and Maintenance

Professor and Programme Convener:
H Beushausen, Dipl-Ing HAW Hamburg MSc(Eng) PhD Cape Town

The primary aim of the MEng and MSc(Eng) specialising in Civil Infrastructure Management & Maintenance is to produce graduates with the necessary knowledge and skills to engage effectively in structural and materials engineering with respect to maintenance, rehabilitation and management of civil infrastructure. The broad areas of interest are deterioration science, assessment technologies, renewal engineering and project management.

All programmes can be completed in two years full-time or over a maximum of five years on a part-time basis.

Master of Engineering specialising in Civil Infrastructure Management and Maintenance
[EM017CIV07]

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5017Z</td>
<td>Minor Dissertation</td>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td>CIV5067Z</td>
<td>Advanced Infrastructure Management</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5116Z</td>
<td>Durability & Condition Assessment of Concrete Structures</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5120Z</td>
<td>Repair & Rehabilitation of Concrete Structures</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CON5016Z</td>
<td>Project Planning & Implementation</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>

Elective courses from the list below ... 40 9

Total credits .. 180

Elective Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5022Z</td>
<td>Structural Concrete Properties & Practice</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CIV5113Z</td>
<td>Structural Dynamics with Applications</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CIV5115Z</td>
<td>Bridge Management & Maintenance</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5118Z</td>
<td>Safety of Special Structures</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5119Z</td>
<td>Structural Performance Assessment & Monitoring</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>

Approved elective as an alternative to the above list ... 40 9

Master of Science in Engineering specialising in Civil Infrastructure Management and Maintenance
[EM023CIV07]

Number | Course | NQF Credits | HEQSF Level |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5000W</td>
<td>Dissertation</td>
<td>180</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

Total credits .. 180

Master of Science in Engineering specialising in Civil Infrastructure Management & Maintenance
[EM024CIV07]

Number | Course | NQF Credits | HEQSF Level |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5000Z</td>
<td>Dissertation</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td>CIV5109Z</td>
<td>Dissertation Preparation</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>
Number | Course | NQF Credits | HEQSF Level
--- | --- | --- | ---
CIV5067Z | Advanced Infrastructure Management | 20 | 9
END5050X | Master’s journal paper | 0 | 9
Elective courses from the list below | 40 | 9
Total credits | 180 | 9

Elective Courses (minimum of 40 credits)

Number	Course	NQF Credits	HEQSF Level
CIV5115Z | Bridge Management & Maintenance | 20 | 9
CIV5116Z | Durability & Condition Assessment of Concrete Structures | 20 | 9
CIV5118Z | Safety of Special Structures | 20 | 9
CIV5119Z | Structural Performance Assessment & Monitoring | 20 | 9
CIV5120Z | Repair & Rehabilitation of Concrete Structures | 20 | 9
CON5016Z | Project Planning & Implementation | 20 | 9
Approved elective as an alternative to the above | 40 | 9

Master of Science in Engineering specialising in Geotechnical Engineering [EM024CIV08]

Senior Lecturer and Programme Convener:
Dr D Kalumba, BSc(Eng) Makerere MSc(Eng) Cape Town PhD Newcastle-upon-Tyne

The master’s programme with a specialisation in Geotechnical Engineering is intended to support high level training and enhance both the technical skills of recent graduates or experienced personnel who work in, or aspire to a career in civil engineering construction, consulting, environmental and related industries.

Core Courses

Number	Course	NQF Credits	HEQSF Level
CIV5000Z | Dissertation | 120 | 9
CIV5109Z | Dissertation Preparation | 0 | 9
CIV5110Z | Laboratory and Field Techniques | 16 | 9
CIV5114Z | Foundation Design | 16 | 9
CIV5122Z | Advanced Soil Mechanics | 16 | 9
END5050X | Master’s journal paper | 0 | 9
Elective courses | 12 | 9
Minimum total credits | 180 | 9

Elective Courses (minimum of 12 credits)

Number	Course	NQF Credits	HEQSF Level
CIV5111Z | Ground Improvement Techniques | 16 | 9
CIV5123Z | Contaminated Land and Remediation | 16 | 9
CIV5124Z | Geosynthetics Engineering | 16 | 9
CIV5125Z | Lateral Earth Supports | 16 | 9
CIV5126Z | Slope Stability | 16 | 9

Enrichment courses (compulsory for MScEng)

Number	Course	NQF Credits	HEQSF Level
CIV5131Z | Research Design and Methodology for Civil Engineering | 16 | 9
Master of Geotechnical Engineering
[EM028CIV08]

Senior Lecturer and Programme Convener:
Dr D Kalumba, BSc(Eng) Makerere MSc(Eng) Cape Town PhD Newcastle-upon-Tyne

The Master of Geotechnical Engineering (MGeotech) programme is designed to aid in the development of graduates in their careers as geotechnical engineers through courses that offer-in-depth understanding of the principles of geotechnical engineering as well as the necessary knowledge and skills to engage effectively in providing solutions to engineering challenges involving the ground control and ground stability in civil engineering construction projects.

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5129W</td>
<td>Geotechnical Engineering Project ...</td>
<td>45</td>
<td>9</td>
</tr>
<tr>
<td>CIV5110Z</td>
<td>Laboratory and Field Techniques...</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CIV5114Z</td>
<td>Foundation Design ..</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CIV5125Z</td>
<td>Lateral Earth Supports..</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Elective courses ...</td>
<td>90</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Minimum total credits ...</td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

Elective Courses (minimum of 87 credits)

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5111Z</td>
<td>Ground Improvement Techniques ...</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CIV5122Z</td>
<td>Advanced Soil Mechanics...</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CIV5123Z</td>
<td>Contaminated Land and Remediation..</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CIV5124Z</td>
<td>Geosynthetics Engineering..</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CIV5126Z</td>
<td>Slope Stability ..</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CIV5131Z</td>
<td>Research Design and Methodology..</td>
<td>16</td>
<td>9</td>
</tr>
</tbody>
</table>

Structural Engineering and Materials

Senior Lecturer and Programme Convener:
Dr S Skatulla Dipl-Ing Karlsruhe PhD Adelaide

The programme offers high level training in structural design, structural analysis and structural materials by providing sound theoretical background and encouraging critical and innovative thinking. Students benefit from expertise in concrete technology, concrete durability, structural performance and design, computational mechanics and finite element analysis. The programme is supported by excellent laboratory and computing facilities and draws from cutting edge research including the in-house developed structural analysis software SESKA.

All programmes can be completed in two years full-time or over a maximum of five years on a part-time basis.

Master of Engineering specialising in Structural Engineering and Materials
[EM017CIV04]

A candidate for the MEng in Structural Engineering and Materials [EM017CIV04] is required to complete 120 credits coursework and a 60 credit minor dissertation.

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
</table>
128 DEPARTMENTS IN THE FACULTY AND COURSES OFFERED

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5017Z</td>
<td>Minor Dissertation</td>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td>CIV5113Z</td>
<td>Structural Dynamics with Applications</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CIV5100Z</td>
<td>Plate and Shell Structures</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Elective Courses</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total credits</td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

Elective courses (minimum of 88 credits)

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5108Z</td>
<td>Advanced Mechanics of Materials</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>MEC5063Z</td>
<td>An introduction to Finite Elements</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>CIV5006Z</td>
<td>Advanced Structural Concrete Engineering</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CIV5002Z</td>
<td>Structural Concrete Properties and Practice</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CIV5119Z</td>
<td>Structural Performance Assessment & Monitoring</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>MEC5064Z</td>
<td>Finite Element Analysis</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>CIV5120Z</td>
<td>Repair and Rehabilitation of Concrete Structures</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5116Z</td>
<td>Durability & Condition Assessment of Concrete Structures</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5041Z</td>
<td>Bridge Analysis and Design</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CIV5112Z</td>
<td>Stability and Design of Steel Structures</td>
<td>16</td>
<td>9</td>
</tr>
</tbody>
</table>

Master of Science in Engineering specialising in Structural Engineering and Materials and Materials

[EM024CIV04]

A candidate for the MSc Eng [EM024] is required to complete prescribed courses of a minimum value of 60 credits and a 120 credit dissertation.

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5000Z</td>
<td>Dissertation</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td>CIV5109Z</td>
<td>Dissertation Preparation</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

Select at least two of the following courses:

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5108Z</td>
<td>Advanced Mechanics of Materials</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>MEC5063Z</td>
<td>An introduction to Finite Elements</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>CIV5113Z</td>
<td>Structural Dynamics with Applications</td>
<td>16</td>
<td>9</td>
</tr>
</tbody>
</table>

Elective Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5006Z</td>
<td>Advanced Structural Concrete Engineering</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CIV5112Z</td>
<td>Stability and Design of Steel Structures</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CIV5002Z</td>
<td>Structural Concrete Properties and Practice</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CIV5100Z</td>
<td>Plate and Shell Structures</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>CIV5119Z</td>
<td>Structural Performance Assessment & Monitoring</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>MEC5064Z</td>
<td>Finite Element Analysis</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>CIV5120Z</td>
<td>Repair and Rehabilitation of Concrete Structures</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5116Z</td>
<td>Durability & Condition Assessment of Concrete Structures</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5041Z</td>
<td>Bridge Analysis and Design</td>
<td>16</td>
<td>9</td>
</tr>
</tbody>
</table>

Enrichment Courses

Compulsory for MSc Eng:

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>Credits</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5131Z</td>
<td>Research Design and Methodology</td>
<td>16</td>
<td>9</td>
</tr>
</tbody>
</table>
Additional courses can be selected from the postgraduate programme of the University of Stellenbosch or from the Center for Research in Computational and Applied Mechanics (CERECAM) at UCT or from the postgraduate programme of Geotechnical Engineering for both the MScEng and MEng degrees.

Transport Studies

Associate Professor and Programme Convenor:
R Behrens, Pr Pln BA MCRP PhD Cape Town

The programme offers degrees specialising in transport studies, with a specific focus on the planning and management of urban passenger transport systems. The primary aim is to produce graduates from a range of postgraduate disciplines with the necessary knowledge and skills to engage effectively with the challenge of creating affordable, efficient, sustainable, safe, equitable and environmentally sound urban transport systems, and to contribute to the implementation of new and demanding policy directives. Curriculum content is cross-disciplinary in orientation and exposes students to a broad range of the analytical, evaluative, planning and management issues they are likely to encounter in the field.

Master of Engineering specialising in Transport Studies

[EM017CIV06]

A candidate for the MEng in Transport Studies is required to complete core courses totalling 120 credits (including a 60 credit minor dissertation) plus approved elective courses totalling a minimum of 60 credits, and to comply with the prescribed curriculum. Candidate elective courses may be selected from within the Transport Studies programme and from other programmes of study.

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5017Z</td>
<td>Minor Dissertation .. 60</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>CIV5132Z</td>
<td>Transport Demand Analysis and Project Assessment .. 20</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>CIV5133Z</td>
<td>Transport Modelling .. 20</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>CIV5071Z</td>
<td>Public Transport System Design and Operations Management ... 20</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Approved elective courses .. 60</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total credits ... 180</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Master of Philosophy specialising in Transport Studies

[EM026CIV06]

A candidate for the MPhil in Transport Studies is required to complete core courses totalling 120 credits (including a 60 credit minor dissertation) plus approved elective courses totalling a minimum of 60 credits, and to comply with the prescribed curriculum.

The MPhil in Transport Studies can also be completed through a 120 credit or 180 credit dissertation.

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5037Z</td>
<td>Minor Dissertation .. 60</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>CIV5035Z</td>
<td>Management of Transport Supply and Demand ... 20</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>CIV5038Z</td>
<td>Integrated Land Use-Transport Planning ... 20</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
Departments in the Faculty and Courses Offered

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5132Z</td>
<td>Transport Demand Analysis and Project Assessment</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Approved elective courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total credits</td>
<td></td>
<td>180</td>
</tr>
</tbody>
</table>

Elective Courses (minimum of 60 credits)

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5036Z</td>
<td>Local Area Transport Planning Management and Design</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5039Z</td>
<td>Non-motorised Transportation</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5133Z</td>
<td>Transport Modelling</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5070Z</td>
<td>Public Transport Policy and Regulation</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5071Z</td>
<td>Public Transport System Design and Operations Management</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5127Z</td>
<td>Discrete Choice Modelling and Stated Choice Survey Design</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>

Master of Transport Studies [EM029CIV06]

A candidate for the Master of Transport Studies is required to complete core courses totalling not less than 65 credits, approved elective courses totalling a minimum of 75 credits, research projects totalling a minimum of 50 credits, and to comply with the prescribed curriculum.

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5135W</td>
<td>Research Project 1: Transport planning and engineering methods</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>CIV5073W</td>
<td>Research Project 2: Transport policy and planning case study</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>CIV5035Z</td>
<td>Management of Transport Supply and Demand</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5038Z</td>
<td>Integrated Land Use-Transport Planning</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5132Z</td>
<td>Transport Demand Analysis and Project Assessment</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Approved elective courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total credits</td>
<td></td>
<td>180</td>
</tr>
</tbody>
</table>

Elective Courses (minimum of 75 credits)

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5036Z</td>
<td>Local Area Transport Planning, Management and Design</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5039Z</td>
<td>Non-motorised Transportation</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5133Z</td>
<td>Transport Modelling</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5070Z</td>
<td>Public Transport Policy and Regulation</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5071Z</td>
<td>Public Transport System Design and Operations Management</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5127Z</td>
<td>Choice Modelling and Stated Choice Survey Design</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>

Urban Infrastructure Design & Management

Professor and Programme Convener:

NP Armitage, PrEng BSc(Eng) Natal MSc(Eng) Cape Town PhD Stellenbosch FSAICE FWISA FSAIMunE Mem IAHR Mem IAHS FIWA

The primary aim of the MPhil specialising in Urban Infrastructure Design and Management is to produce graduates with the necessary knowledge and skills to engage effectively with infrastructure design and management in developing cities. Topics include: Issues and strategies; community development, urban renewal, sustainable urban systems, advanced infrastructure management and information technology and other planning and management topics.
A central issue for both South Africa and the broader African continent is the delivery of urban services and infrastructure to rapidly growing urban populations, such that they are enabled to live and work in sustainable and integrated environments. This Master’s programme, leading to an MPhil in Urban Infrastructure Design and Management, is aimed at building capacity among those in government and the private sector that are committed to the future of African cities and to the servicing of particularly poorer inhabitants. The programme has a strong inter-disciplinary focus as the Faculty believes that urban problems can only be addressed through an integration of approaches which come from specific disciplinary backgrounds. To this end the programme draws on staff from engineering, architecture, planning, environmental sciences, geography, the social sciences, and management. To obtain the MPhil degree, students are required to complete four core modules, two electives and the minor dissertation.

The programme is closed to new applicants. Students currently registered for the programme will be permitted to continue provided they will have completed their coursework requirement by March 2017, and are registered for their dissertation / minor dissertation.

Master of Philosophy specialising in Urban Infrastructure Design & Management
[EM027CIV03]

Topics for CIV5037Z: Minor Dissertation will be restricted to the fields of interest of the academic staff linked to this programme. For more information, contact the Postgraduate Programme Administrator Ms Rowen Geswindt or the Programme Convenor.

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5037Z</td>
<td>Minor Dissertation</td>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td>CIV5064Z</td>
<td>Urban Transitions in the Global South</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5065Z</td>
<td>Urban Renewal</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>END5042Z</td>
<td>Sustainable Urban Systems</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>END5043Z</td>
<td>Community Development</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5000Z</td>
<td>Approved elective courses</td>
<td>40</td>
<td>9</td>
</tr>
<tr>
<td>Total credits</td>
<td></td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

Elective Courses (select 40 credits)

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5067Z</td>
<td>Advanced Infrastructure Management</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5107Z</td>
<td>Integrated Urban Water Management</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CON5016Z</td>
<td>Project Implementation and Management</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5036Z</td>
<td>Local Area Transport Planning, Management & Design</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5038Z</td>
<td>Integrated Land-Use & Transport Planning</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>Total credits</td>
<td></td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

Master of Philosophy specialising in Urban Infrastructure Design & Management
[EM026CIV03]

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5000Z</td>
<td>Dissertation</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td>CIV5109Z</td>
<td>Dissertation Preparation</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s Journal Paper</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>CIV5064Z</td>
<td>Urban Transitions in the Global South</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5065Z</td>
<td>Urban Renewal</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>END5042Z</td>
<td>Sustainable Urban Systems</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>END5043Z</td>
<td>Community Development</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>Total credits</td>
<td></td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
Elective Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5067Z</td>
<td>Advanced Infrastructure Management</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5107Z</td>
<td>Integrated Urban Water Management</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CONS016Z</td>
<td>Project Implementation and Management</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5036Z</td>
<td>Local Area Transport Planning, Management & Design</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5038Z</td>
<td>Integrated Land-Use & Transport Planning</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>

Water Quality Engineering

Professor and Programme Convener:
GA Ekama, BSc(Eng) PhD Cape Town SFWISA FRSSAf FSAAE MASSAf MWEF MIWA

The primary aim of the MEng and MScEng specialising in Water Quality Engineering is to produce graduates with the necessary knowledge and skills to engage effectively in theory, design, modelling and operation Waste Water Treatment, Urban Water and Water Distribution.

Master of Engineering specialising in Water Quality Engineering
[EM017CIV02]

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5017Z</td>
<td>Minor Dissertation</td>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td>CIV5032Z</td>
<td>Introduction to Wastewater Treatment</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>CIV5045Z</td>
<td>The Activated Sludge System</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>CIV5046Z</td>
<td>Sedimentation in Water Treatment</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CIV5047Z</td>
<td>Sewage Sludge Treatment</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CIV5048Z</td>
<td>Design of Biological Nutrient Removal Systems</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5050Z</td>
<td>Integrated Wastewater Treatment Plant Design</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>Pre-approved elective credits</td>
<td>50</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Total credits</td>
<td>180</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elective Courses (select 50 credits)

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5049Z</td>
<td>Modelling & Simulation of Wastewater Treatment</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>CIV5051Z</td>
<td>Aquatic Chemistry Part A</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>CIV5052Z</td>
<td>Aquatic Chemistry Part B</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>CIV5054Z</td>
<td>Advanced Chemical, Physical & Biological Processes Modelling</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

Master of Science in Engineering specialising in Water Quality Engineering
[EM023CIV02]

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5000W</td>
<td>Dissertation</td>
<td>180</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Total credits</td>
<td>180</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Master of Science in Engineering specialising in Water Quality Engineering
[EM024CIV02]

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5000Z</td>
<td>Dissertation</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td>CIV5109Z</td>
<td>Dissertation Preparation</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>
DEPARTMENTS IN THE FACULTY AND COURSES OFFERED

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>END5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>CIV5032Z</td>
<td>Introduction to Wastewater Treatment</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>CIV5045Z</td>
<td>The Activated Sludge System</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>CIV5046Z</td>
<td>Sedimentation in Water Treatment</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CIV5047Z</td>
<td>Sewage Sludge Treatment</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CIV5048Z</td>
<td>Design of Biological Nutrient Removal Systems</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5050Z</td>
<td>Integrated Wastewater Treatment Plant Design</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>

Elective Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV5049Z</td>
<td>Modelling & Simulation of Wastewater Treatment</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>CIV5050Z</td>
<td>Integrated Wastewater Treatment Plant Design</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CIV5051Z</td>
<td>Aquatic Chemistry Part A</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>CIV5052Z</td>
<td>Aquatic Chemistry Part B</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>CIV5054Z</td>
<td>Advanced Chemical, Physical & Biological Processes Modelling</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

Doctoral Programmes

Doctor of Philosophy

[ED001CIV01]

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV6000W</td>
<td>Thesis</td>
<td>360</td>
<td>10</td>
</tr>
</tbody>
</table>

Course descriptions are set out in the section Courses Offered. The course code abbreviation for Civil Engineering is CIV.

Course Outlines

CIV5000W MASTERS IN CIVIL ENGINEERING DISSERTATION

180 NQF credits at HEQSF level 9

Course outline:
The dissertation should incorporate any or all of the following: design of all or part of an engineering project to a specification involving advanced concepts and theoretical principles; a research project of a theoretical or practical nature; a critical review of a specified topic based upon a comprehensive search of the literature or available data; development of an item of equipment or a technique involving novel features or advanced design; or any other study acceptable to the Faculty.

DP requirements: None

Assessment: Written work counts 100%.

CIV5000Z MASTERS IN CIVIL ENG - DISSERT PART

120 NQF credits at HEQSF level 9

Course entry requirements: CIV5109Z

Course outline:
The dissertation should incorporate any or all of the following: design of all or part of an engineering project to a specification involving advanced concepts and theoretical principles; a research project of a theoretical or practical nature; a critical review of a specified topic based upon a comprehensive search of the literature or available data, development of an item of equipment or a technique involving novel features; or advanced design, or any other study acceptable to the Faculty.

DP requirements: None
Assessment: Written work counts 100%.

CIV5002Z STRUCTURAL CONCRETE PROPERTIES & PRACTICE
Not offered in 2017
16 NQF credits at HEQSF level 9
Convener: Professor H Beushausen
Course entry requirements: BScEng
Course outline:
The aims of the course are to provide structural engineers with fundamental and practical knowledge in concrete materials technology, to establish an understanding on modelling and designing concrete properties relevant to structural design, and to create awareness on chemical and physical material characteristics of cementitious construction materials. The topics covered in this course include: constituent materials (cements, admixtures, cement extenders, aggregates); desirable properties for concrete (plastic and hardened properties, including strength, creep, shrinkage, elastic modulus, durability); concrete mix design; prediction and modelling of concrete structural properties; concrete failure and fracture; concrete quality control; deterioration mechanisms; special concretes such as high strength concrete, self compacting concrete and fibre reinforced concrete. The course includes lectures, industrial visits, seminars, projects, and laboratory sessions.
Lecture times: 40 hours (1 week block lectures)
DP requirements: Attendance of lectures and practicals; submission of assignments and project reports.
Assessment: Research paper 15%, research oral presentation 10%, laboratory report 15%, final examination 60% (closed book).

CIV5006Z ADVANCED STRUCTURAL CONCRETE ENGINEERING
Not offered in 2017
16 NQF credits at HEQSF level 9
Convener: Professor H Beushausen
Course entry requirements: BScEng; CIV3049S (or equivalent), CIV4045F (or equivalent)
Course outline:
The aims of this course are to provide structural engineers with an understanding of structural failure mechanisms of reinforced concrete slabs, to present analysis and design methods for reinforced concrete slabs at the ultimate limit state, and to introduce design principles for composite concrete-to-concrete structures. The course contents include: yield line analysis and design of reinforced concrete slabs (yield line patterns, failure mechanisms, internal and external work done, detection of the critical bending moment, unusual slab geometries, optimization of reinforcement arrangements, etc.); Hillerborg strip method of analysis and design of concrete slabs (principles and theory of analysis and design, design optimization, bending moment redistribution, optimization of reinforcement layout); and composite structural systems (ultimate limit state analysis and design principles, practical considerations).
DP requirements: Attendance of lectures, an average assignment mark of 50%.
Assessment: Assignments 40%, final exam 60% (closed book).

CIV5017Z MINOR DISSERTATION
60 NQF credits at HEQSF level 9
Convener: As per programme requirement
Course entry requirements: Core MEng courses to be completed
Course outline:
Candidates will undertake a project of a development, review, or practical nature on a prescribed Civil Engineering topic. The project may be undertaken individually or as a group project and a project report must be written. The project will require approximately 600 hours of work.
DP requirements: None
Assessment: Written work 100%.
CIV5025F CONTRACT LAW
12 NQF credits at HEQSF level 9
Convener: Professor H Beushausen
Course entry requirements: Suitable undergraduate degree
Course outline:
The course aims to review the Law of Contract to develop a framework for the analysis of standard documentation for both main and subsidiary civil engineering contracts. Important aspects of mediation, arbitration and court procedures are stressed as is the need to identify and resolve legal problems through timeous negotiation. Disputes which have gone to law or arbitration will be studied to illustrate principles.
DP requirements: None
Assessment: Assignments 50%, final examination 50%.

CIV5030Z CIVIL ENGINEERING PROJECT
20 NQF credits at HEQSF level 9
Convener: As per programme requirement
Course entry requirements: Completion of appropriate postgraduate courses.
Course outline:
On the recommendation of the supervisor and with the agreement of the Head of Department, a student registered for an MSc(Eng) may be permitted to enter into a programme of individual study on a specialised topic. A statement of objectives must be agreed upon, and the course of study will be guided by the supervisor. The programme will involve the student in about 200 hours of work, and a written report must be submitted. The written report will be examined, and a further oral examination may be held.
Details of project topics are available from the Department.
DP requirements: None
Assessment: Written project 100%.

CIV5032Z PRINCIPLES OF WASTEWATER TREATMENT & WASTEWATER CHARACTERISATION
Not offered in 2017
4 NQF credits at HEQSF level 9
Convener: Professor G Ekama
Course outline:
This advanced course on the principles of wastewater treatment and wastewater characterisation includes: objectives of wastewater treatment; wastewater chemical and physical characterization; measurement of energy, nitrogen and phosphorus in municipal wastewater; effect of settlement and filtration. Also covered are: characterisation of primary sludge for anaerobic digestion, and an overview of unit operations in wastewater treatment.
DP requirements: None
Assessment: Examination 100%.

CIV5035Z MANAGEMENT OF TRANSPORT SUPPLY AND DEMAND
20 NQF credits at HEQSF level 9
Convener: Associate Professor R Behrens
Course entry requirements: None
Course outline:
This course aims to develop an advanced understanding of transport systems management. Topics include: the rationale for the management of transport systems through alternatives to large scale infrastructure provision; transport impact assessment and access management as a means of managing the impacts of new land use development on transport systems; 'road space management’ as a means of prioritising public transport vehicles; 'transport system management’ as a means of
managing transport supply; 'travel demand management' as a means of managing travel behaviour; and the use of 'intelligent transport systems' in supply and demand management.

CIV5036Z LOCAL AREA TRANSPORT PLANNING, MANAGEMENT AND DESIGN
20 NQF credits at HEQSF level 9
Convener: Associate Professor R Behrens
Course entry requirements: None
Course outline:
This advanced course in local area transport planning, management and design includes: the planning and implementation of transport improvements at a local area (as opposed to citywide) scale; urban design, landscaping and geometric design of streets; the design and management of local area movement networks; and accommodating pedestrians, bicycles and persons with movement disabilities in local area movement networks.

CIV5037Z MINOR DISSERTATION
60 NQF credits at HEQSF level 9
Convener: As per programme requirement
Course entry requirements: Core MPhil courses to be completed
Course outline:
This minor dissertation course includes the selection of an approved research problem/topic; the preparation of research project/proposal; conducting a literature review; conducting research, including information/data acquisition and analysis, and the preparation of minor dissertation for examination (a word length of 15 000 words should not normally be exceeded). The project will require approximately 600 hours of work.

CIV5038Z INTEGRATED LAND USE TRANSPORT PLANNING
20 NQF credits at HEQSF level 9
Convener: Associate Professor R Behrens
Course entry requirements: None
Course outline:
This course aims to develop an advanced understanding of the integration of land use planning and transport planning process. Topics include: theoretical perspectives on the relationship between transport systems and urban activity systems; co-evolution of transport systems and urban form; sustainable transport and the problem of 'automobile dependent' cities; planning paradigms and rationales for public intervention into land use and transport systems; legislative, institutional and financial frameworks for land use and transport planning in South Africa; conceptual framing and practical application of approaches to integrated land use-transport planning in the South African context and local and international case studies and experiences.

CIV5039Z NON-MOTORISED TRANSPORTATION
20 NQF credits at HEQSF level 9
Convener: Associate Professor M. Vanderschuren
Course entry requirements: None
Course outline:
This course aims to develop an advanced understanding of planning and design of non-motorised transportation infrastructure. Topics include: current South African realities and the importance of non-motorised travel modes; planning frameworks for non-motorised transportation infrastructure improvements and network management; methods of site and network analysis, and approaches to modelling and simulation; footway and pathway design; the design of pedestrian precincts; low-cost bicycle supply and promotion; cycleway and bicycle parking design and pedestrian and bicycle crossing facilities.
CIV5040W MASTERS DISSERTATION: TRANSPORT STUDIES
180 NQF credits at HEQSF level 9
Course outline:
The dissertation should incorporate any or all of the following: a research project of a theoretical or practical nature; a critical review of a specified topic based upon a comprehensive search of the literature or available data; development of an item of equipment or a technique involving novel features or advanced design; or any other study acceptable to the Faculty.

CIV5041Z BRIDGE ANALYSIS & DESIGN
Not offered in 2017
16 NQF credits at HEQSF level 9
Convener: Professor H Beushausen
Course entry requirements: BScEng
Course outline:
This course aims to develop an advanced understanding of conceptual and structural analysis and design of concrete bridges. Topics include: conceptual design of bridges (design objectives and basis of design, design procedures, examples of good design, load bearing systems); preliminary structural design (load models, normative guidelines, analytical models); modelling of concrete bridges (typical finite element models, movable loads, dynamic loading); construction technology (principles and application of various construction methods); prestressing of concrete bridges (design principles, tendon layouts, methods of prestressing, prestress losses, etc.); concrete technology aspects (suitable concrete types, special design requirements for bridges, durability aspects); structural condition assessment (principles of non-destructive dynamic testing and verification of load-bearing capacity).
DP requirements: Attendance of lectures and practicals, submission of assignments and project reports.
Assessment: Assignments and projects 50%, final examination 50%.

CIV5045Z THE ACTIVATED SLUDGE SYSTEM
Not offered in 2017
10 NQF credits at HEQSF level 9
Convener: Professor G Ekama
Course entry requirements: CIV5032Z
Course outline:
This course aims to develop an advanced understanding of the activated sludge system. Topics include: biological process modelling of the activated sludge system including nitrification; material mass balances; reactor kinetics; biological process kinetic equations of ordinary heterotrophic organism and autotrophic nitrifier organism growth and endogenous respiration; development of the steady state activated sludge model; application to design, selection of sludge age, impact of primary settling, sewage sludge disposal. Aeration is also covered.
DP requirements: None
Assessment: Examination 100%

CIV5046Z SEDIMENTATION IN WATER & WASTEWATER TREATMENT
Not offered in 2017
8 NQF credits at HEQSF level 9
Convener: Professor G Ekama
Course entry requirements: CIV5032Z
Course outline:
This advanced course in sedimentation in water and wastewater treatment includes: classes of settling; factors affecting settling tanks; column test for water-treatment solids settling characterization; application to sizing settling tanks (classes 1 and 2 settling); effect of flocculation; flux theory and application to sizing wastewater treatment plant settling tanks (classes 3 and 4);
measures of activated sludge settleability and relationships between them; comparison of flux theory with other design procedures; and computational fluid dynamics modelling of settling tanks.

DP requirements: None

Assessment: Examination 100%

CIV5047Z
SEWAGE SLUDGE TREATMENT
Not offered in 2017

8 NQF credits at HEQSF level 9
Convener: Professor G Ekama
Course entry requirements: CIV5032Z, CIV5046Z

Course outline:
This advanced course in sewage sludge treatment includes: an introduction to sewage sludge reuse and disposal guidelines in South Africa; characterization of primary and waste activated sludge in the context of mass balances over the entire wastewater treatment plant; sludge thickening with gravity sedimentation and flotation; development and validation of steady state aerobic digestion model for primary and waste activated sludge stabilisation and application to design and analysis including oxygen transfer and sludge thickening considerations; kinetics, stoichiometry and weak acid/base chemistry of anaerobic digestion; development, validation and application of steady state anaerobic digestion model, generation of sludge treatment liquors and the impact of their recirculation on effluent quality, and nutrient (N and P) reduction in sludge treatment liquors.

DP requirements: None

Assessment: Examination 100%

CIV5048Z
STEADY STATE DESIGN OF BIOLOGICAL NUTRIENT REMOVAL SYSTEMS
Not offered in 2017

20 NQF credits at HEQSF level 9
Convener: Professor G Ekama
Course entry requirements: CIV5045Z

Course outline:
This advanced course in steady state design of biological nutrient removal systems includes: ensuring nitrification; nitrification capacity, kinetics of denitrification, development of the steady state nitrification denitrification (ND) model; effect of ND on reactor volume, effluent alkalinity and oxygen demand; the role of readily biodegradable (RB) and slowly biodegradable (SB) organics; denitrification potential; effect of the influent TKN/COD ratio on unaerated mass fraction, N removal and effluent quality; calculation of inter-reactor recycles ratios for design and analysis of pre-, post- and combined denitrification systems. Characteristics of polyphosphate accumulating organisms (PAOs); development and use of biological excess phosphorus removal (BEPR) steady state model; design and analysis of NDBEPR of systems, chemical P precipitation and its effect on BEPR; novel applications; the impact of membrane solid/liquid separation and external nitrification on NDBEPR system design.

DP requirements: None

Assessment: Examination 100%

CIV5049Z
MODELLING & SIMULATION OF WASTEWATER TREATMENT SYSTEMS
12 NQF credits at HEQSF level 9
Convener: Professor G Ekama
Course entry requirements: CIV5048Z

Course outline:
This advanced course in the modelling and simulation of wastewater treatment systems includes: kinetics of the readily biodegradable (RBCOD) and slowly biodegradable (SBCOD) organics utilization by ordinary heterotrophic organisms (OHOs), nitrification by autotrophic nitrifying
organisms (ANOs) in aerobic systems; modifications for application to anoxic-aerobic systems; kinetics of RBCOD conversion to short chain fatty acids (SCFA) in the anaerobic reactor, kinetics of SCFA uptake, P release and substrate storage under anaerobic conditions and substrate utilisation (growth) and P uptake and aerobic conditions by PAO's; model presentation in Petersen matrix format; links to and simplifications of kinetics for steady state BNR models; programming, modelling and simulation of BNR activated sludge systems with the pre-coded UCTOLD and UCTPHO programmes and the ASIM or AQUASIM shell packages. Filamentous organism type and identification, control by means of kinetic and metabolic selection; and causes and control of filamentous organism proliferation in BNR systems.

DP requirements: None

Assessment: Examination 100%.

CIV5050Z INTEGRATED WASTEWATER TREATMENT PLANT DESIGN

Not offered in 2017

20 NQF credits at HEQSF level 9

Convener: Professor G Ekama

Course entry requirements: CIV5045Z, CIV5046Z, CIV5047Z

Course outline:
This advanced course in integrated wastewater treatment plant design includes: calculating daily composite average flow and loads from diurnal data; influent flow balancing; integrated wastewater treatment plant modelling and design; major project brief; economic evaluation of different wastewater treatment plant layouts to achieve different technical, and environmental and economic objectives.

DP requirements: None

Assessment: Major project 100%.

CIV5051Z AQUATIC CHEMISTRY PART A

14 NQF credits at HEQSF level 9

Convener: Professor G Ekama

Course entry requirements: None

Course outline:
This advanced course in aquatic chemistry covers: chemical thermodynamics; acids and bases, activity, pH equilibria of weak acid base systems, master variable diagrams, titration of acids and bases, reference species; alkalinity acidity and pH, buffering intensity, detailed treatment of the carbonate system; precipitation and dissolution, Caldwell-Lawrence conditioning diagrams, critical evaluation of the Langelier index; and terrestrial and ground water stabilization.

DP requirements: None

Assessment: Examination 100%.

CIV5052Z AQUATIC CHEMISTRY PART B

14 NQF credits at HEQSF level 9

Convener: Professor G Ekama

Course entry requirements: CIV5051Z

Course outline:
This advanced course in aquatic chemistry covers: mixed weak acid systems; alkalinity, acidity and Deffeyes types single aqueous phase diagrams; application to pH control in anaerobic digester; the nitrogen and sulphur systems.; Kinetics of precipitation reactions; redox equilibrium systems; Pourbaix (pe-pH) diagrams; application to the chemistry of iron, manganese, lead, chlorine and nitrates in treated and wastewaters; kinetics of redox reactions; and applications to physico-chemical treatment processes.

DP requirements: None

Assessment: Examination 100%.
CIV5054Z ADVANCED CHEMICAL, PHYSICAL & BIOLOGICAL PROCESSES MODELLING
10 NQF credits at HEQSF level 9
Convener: Professor G Ekama
Course entry requirements: CIV5049Z, CIV5051Z, CIV5052Z
Course outline:
This advanced course in chemical, physical and biological processes modelling includes: aqueous mixed weak acid base chemistry of the carbonate, phosphate, ammonia, short chain fatty acid and sulphur systems; kinetics of gas evolution and stripping; modelling multiple mineral precipitation in 3 phases such as in mineral precipitation in anaerobic digester liquor aeration; integrated chemical, physical and biological processes modelling of activated sludge and anaerobic digestion; modelling acidogenic, methanogenic and sulphidogenic systems.
DP requirements: None
Assessment: Examination 100%.

CIV5064Z URBAN TRANSITIONS IN THE GLOBAL SOUTH
20 NQF credits at HEQSF level 9
Convener: Professor E Pieterse
Course entry requirements: Any suitable four-year degree
Course outline:
The aim of this course is to provide students with a wide-ranging introduction to the dynamics of differential urbanization processes in the global South with an eye on understanding the role of infrastructure in advancing more sustainable urban forms and patterns. The overarching learning objectives of the module are to understand the nature, drivers and consequences of the second urban transition from a sustainability perspective, as well as to make connections between urbanisation and long-term sustainability outcomes in different contexts, settings and scales. Topics covered include problems and issues of developing cities, poverty, exclusion, informality, livelihoods, economic development, governance and infrastructure.
Lecture times: 40 hours (1 week block lectures)
DP requirements: Complete all assignments.
Assessment: Coursework 35%, take home paper 65%.

CIV5070Z PUBLIC TRANSPORT POLICY AND REGULATION
20 NQF credits at HEQSF level 9
Convener: Associate Professor R Behrens
Course entry requirements: None
Course outline:
This course aims to develop an understanding of public passenger transport system policy analysis and regulation. Topics include: Legislative and planning frameworks: institutional, legislative, financing and planning frameworks for integrated public transport infrastructure provision and service operation. Public transport policy: policy debates on subsidisation and competition regulation; mode alternatives analysis; international case studies of public transport system reform. Paratransit reform: operator consolidation and transition; fleet renewal; service upgrade; integration with scheduled services. Public transport system regulation and competition: industry structures; approaches to regulation and competition; licensing and contracting. Quality of service: quality-of-service measurement; passenger satisfaction measurement; passenger information systems and wayfinding.

CIV5071Z PUBLIC TRANSPORT SYSTEM DESIGN AND MANAGEMENT
20 NQF credits at HEQSF level 9
Convener: Associate Professor M Zuidgeest
Course entry requirements: None
Course outline:
This course aims to develop an advanced understanding of public passenger transport system design and operations management. Topics include: Public transport system concepts: basic bus and rail system concepts; alternative technologies and operating characteristics. Public transport system design: route network planning; service planning; road and rail right-of-way design and vehicle prioritisation; signalling systems; station and interchange design; demand estimation; passenger capacity analysis. Public transport system operations management: service quality assessment, scheduling and rostering; train movement control systems; reliability, disruption and incident management; performance assessment; ridership measurement. Integrated fare structures: integrated ticketing systems; fare structures; fare setting. System maintenance: asset management; vehicle fleet and rolling stock maintenance and refurbishment. DP requirements: Students are required to pass class exercises during the course week.

CIV5073W TRANSPORT POLICY AND PLANNING CASE STUDY
25 NQF credits at HEQSF level 9
Convener: Associate Professor R Behrens
Course entry requirements: None
Course outline:
The aim of this course is to offer students an opportunity to undertake a case study research project in which they are able to develop or deepen skills in transport policy and planning processes. The research would involve undertaking a critical investigation of the requirement for, the process of preparing and implementing, the content and the impacts of a selected transport policy, plan, strategy or project.

CIV5100Z PLATE & SHELL STRUCTURES PART A
16 NQF credits at HEQSF level 9
Convener: Professor A Zingoni
Course entry requirements: BScEng
Course outline:
This course aims to be a comprehensive treatment of plate and shell theories, and their application to the solution of various problems in structural engineering. Plate and Shell Structures part A will cover plates subjected to bending and twisting (slope, curvature, twist, bending moments, transverse shears and twisting moments); the derivation of the bending equation for transversally loaded plates (rectangular and polar co-ordinates), solutions for rectangular plates and circular plates, practical applications, introduction to shell structures; the membrane hypothesis for shells; the membrane theory of axisymmetrically loaded shells of revolution.
DP requirements: None
Assessment: Examination 100%.

CIV5104S PLATE & SHELL STRUCTURES PART B
Not offered in 2017
16 NQF credits at HEQSF level 9
Convener: Professor A Zingoni
Course entry requirements: CIV5100Z
Course outline:
This course aims to be a comprehensive treatment of plate and shell theories, and their application to the solution of various problems in structural engineering. Plate and Shell Structures I will cover plates subjected to bending and twisting (slope, curvature, twist, bending moments, transverse shears and twisting moments); the derivation of the bending equation for transversally loaded plates (rectangular and polar co-ordinates), solutions for rectangular plates and circular plates, practical applications, introduction to shell structures; the membrane hypothesis for shells; the membrane theory of axisymmetrically loaded shells of revolution.
DP requirements: None
Assessment: Examination 100%.

CIV5107Z INTEGRATED URBAN WATER MANAGEMENT
20 NQF credits at HEQSF level 9
Convener: Professor NP Armitage
Course entry requirements: Any suitable four-year degree.
Course outline:
The aim of this course is to introduce students to integrated urban water management (IUWM). This includes: social imperatives; environmental considerations; politics and water service delivery. Planning for water in the City of Cape Town; servicing the informal settlements of Cape Town. Water supply: key considerations for water reticulation systems; water supply options; household management of water; water demand management; public health considerations. Sanitation: options; managing sanitation in informal settlements. Stormwater: managing stormwater in the City of Cape Town; rehabilitating urban rivers; groundwater issues; Sustainable Drainage Systems (SuDS); catchment litter management. Water Sensitive Urban Design (WSUD); water management systems; sustainability indicators.
Lecture times: 40 hours (1 week block lectures).
DP requirements: Complete all assignments.
Assessment: Oral presentations 20%, two major assignments 80%.

CIV5108Z ADVANCED MECHANICS OF MATERIALS
16 NQF credits at HEQSF level 9
Convener: Dr S Skatulla
Course entry requirements: BScEng or equivalent
Course outline:
This advanced course in the mechanics of materials aims to introduce students to the following topics: physical mechanisms of deformation of common construction materials; continuum mechanics and its main mathematical tool, tensor analysis; non-linear continuum material behaviour, including visco-elasticity, plasticity, and modelling; failure and fracture characteristics and modelling of these effects. An introduction to computational mechanics is also included.
DP requirements: 40% Subminimum in class tests.
Assessment: Examination 60%, coursework 40%.

CIV5109Z DISSERTATION PREPARATION
Prerequisite for CIV5000Z and END5041W
0 NQF credits at HEQSF level 9
Convener: As per programme requirement.
Course entry requirements: None
Course outline:
The aim of this course is to allow a student to undertake preparatory work for the master’s dissertation. Work required includes literature searches and reviews; identification of the research problem, objectives and hypothesis; consideration of research methodology; planning for the active research phase; and ensuring that research infrastructure (e.g. apparatus etc.) is or will be in place. The student should maintain regular contact with his/her supervisor in order to show evidence of suitable progress towards these aims. The supervisor must indicate satisfactory fulfilment of the course aims prior to the student proceeding to the dissertation.
DP requirements: None

CIV5110Z LABORATORY & FIELD TECHNIQUES
16 NQF credits at HEQSF level 9
Convener: Dr D Kalumba
Course entry requirements: Suitable undergraduate degree qualification in an engineering, geosciences or geological field.
Course outline:
This course aims to develop an advanced understanding of laboratory and field techniques. Topics include: Laboratory methods: role and scope of laboratory tests; fundamentals of stress-strain and strength measurements; stresses, pore pressures and strains; transducers and control systems; practical applications. The theoretical and practical aspects of in situ tests in geotechnical engineering. Tests discussed include: dynamic cone penetrometer standard penetration test, field vane, piezocene, dilatometer, pressuremeter etc. Geophysical methods are also included. Emphasis on use of in situ test results for determining engineering properties of soil for design. Field instrumentation; settlement gauges; extensometers; inclinometers; piezometers; geotechnical data correlation charts; measurements of in-situ stresses and permeability's; etc. are also covered.

Lecture times: 40 hours (1 week block lectures).
DP requirements: None
Assessment: 40% Coursework, project 60%.

CIV5111Z GROUND IMPROVEMENT TECHNIQUES
16 NQF credits at HEQSF level 9
Convener: Dr D Kalumba
Course entry requirements: Suitable undergraduate degree qualification in an engineering, geosciences or geological field
Course outline:
This course aims to introduce participants to the concepts underpinning a range of ground improvements and soil remediation techniques and an appreciation of how these techniques are applied in practice. It covers important design and construction aspects associated with ground improvement techniques including: mechanical methods (compaction, explosives, vibroflotation, vibroreplacement); hydraulic methods (groundwater lowering, preloading, electro-osmosis); physical/chemical methods (admixtures, grouting, freezing); and inclusions.

Lecture times: 40 hours (1 week block lectures)
DP requirements: None
Assessment: Coursework 50%, Project 50%

CIV5112Z STABILITY & DESIGN OF STEEL STRUCTURES
16 NQF credits at HEQSF level 9
Convener: Dr S Skatulla
Course entry requirements: BScEng
Course outline:
This course aims to treat advanced topics in constructional steel work. The topics include elastic and inelastic buckling behaviour; plate buckling; non-linear instability behaviour of thin-walled structures, design for fatigue, design of steel-concrete composites, hybrid steel structures, steel connections plate girders, and the behaviour of steel structures under fire. Applications in industrial buildings and crane supporting structures are also addressed.

DP requirements: None
Assessment: Coursework 50%, examination 50%

CIV5113Z STRUCTURAL DYNAMICS WITH APPLICATIONS
Not offered in 2017
16 NQF credits at HEQSF level 9
Convener: Professor P Moyo
Course entry requirements: BScEng
Course outline:
This course aims to introduce the concepts of structural dynamics and its applications in structural engineering. Topics covered include dynamic equilibrium of structures. Response of a single degree of freedom system to dynamic excitation: free vibration, harmonic loads, impulse loading and general loading Response of multi-degree-of-freedom systems. Free vibrations: mass, damping, and stiffness matrices. Rayleigh damping. Forced vibrations: modal superposition and step by step
methods. Continuous systems. Applications to seismic design of structures, blast and impact effects on structures and wind engineering.

Lecture times: 40 hours (1 week block lectures).

DP requirements: None

Assessment: Coursework 50%, examination 50%.

CIV5114Z FOUNDATION DESIGN
16 NQF credits at HEQSF level 9

Convener: Dr D Kalumba

Course entry requirements: Suitable undergraduate degree qualification in an engineering, geosciences or geological field.

Course outline:
This course aims to furnish participants with the necessary knowledge and design skills required to ensure stability of both the ground, and any structure built in or on the ground. It will introduce participants to the application of theories of soil mechanics, applied mathematics and physics to provide solutions to the serviceability and ultimate limit states of geotechnical structures. Topics include: review of soil mechanics; working stress approach, limit state design; analysis and design of shallow and deep foundations; determination of settlement of structures; use of foundation design standards such as Eurocodes, SANS 10160; etc.

Lecture times: 40 hours (1 week block lectures).

DP requirements: None

Assessment: Coursework 50%, examination 50%.

CIV5115Z BRIDGE MANAGEMENT & MAINTENANCE
20 NQF credits at HEQSF level 9

Convener: Professor P Moyo

Course entry requirements: BScEng

Course outline:
This course aims to introduce the principles of bridge management and maintenance. The focus is on both highway bridges and railway bridges. The course provides the basic philosophies behind bridge management systems, the structure of a bridge management system, and the implementation of bridge management system. Life cycle cost analysis of bridges are introduced. Linkages between bridge management, maintenance and rehabilitation of bridges is discussed. Key to this course are practical bridge inspections and case studies.

Lecture times: 40 hours (1 week block lectures).

DP requirements: None

Assessment: Coursework 50%, examination 50%.

CIV5116Z DURABILITY & CONDITION ASSESSMENT OF CONCRETE STRUCTURES
20 NQF credits at HEQSF level 9

Convener: Professor H Beushausen

Course entry requirements: BScEng

Course outline:
This advanced course aims to develop an understanding of durability aspects, service life design, and non-destructive testing of concrete structures. Topics include: concrete deterioration mechanisms (physical, mechanical and chemical deterioration); reinforcement corrosion (principles, mechanisms, modelling, assessment, prevention); prevention of concrete deterioration through material selection, mix design and construction; service-life modelling (principles, deterioration models, service life models, normative guidelines); fire damage to structures; impact of loads on concrete structures; on-site evaluation techniques and non-destructive testing (principles, planning and execution of assessments, test methods (types, application and limitations, interpretation of
results, case studies); diagnostic investigations and laboratory testing. The course is based on lectures and projects and may include case studies, laboratory sessions, and site visits.

Lecture times: 40 hours (1 week block lectures).

DP requirements: Attendance of lectures and practicals, submission of assignments and project reports.

Assessment: Assignments and projects (50%), final examination (50%).

CIV5118Z SAFETY OF SPECIAL STRUCTURES

Not offered in 2017

- 20 NQF credits at HEQSF level 9
- **Convener:** Professor P Moyo
- **Course entry requirements:** BScEng

Course outline: The course introduces students to the governance and management of special structures. The procedures employed for safety evaluation are generally not specified in codes of practice. Probabilistic based risk analysis and surveillance techniques for the evaluation of loading and consequences of failure will be introduced. Case studies are used to demonstrate the principles.

Lecture times: 40 hours (1 week block lectures).

DP requirements: None

Assessment: Coursework 50%, examination 50%.

CIV5119Z STRUCTURAL PERFORMANCE ASSESSMENT & MONITORING

- 20 NQF credits at HEQSF level 9
- **Convener:** Professor P Moyo
- **Course entry requirements:** CIV5113Z

Course outline: This aims to introduce concepts of structural health monitoring of civil infrastructure. The course covers: philosophy of structural performance assessment, performance indicators, strategies for structural performance assessment, introduction to theoretical modal analysis, experimental modal analysis, instrumentation, data acquisition, data quality assurance, modal parameter estimation and validation, introduction to model updating, model updating methods, structural modifications, correlation between tests and FEM models, structural monitoring, measurement of live load strains/stresses, probabilistic data analysis, material performance assessment, performance assessment, and estimation of remaining life.

Lecture times: 40 hours (1 week block lectures).

DP requirements: None

Assessment: Coursework 50%, examination 50%.

CIV5120Z REPAIR & REHABILITATION OF CONCRETE STRUCTURES

Not offered in 2017

- 20 NQF credits at HEQSF level 9
- **Convener:** Professor H Beushausen
- **Course entry requirements:** BScEng

Course outline: This course deals with the repair and rehabilitation of concrete structures and covers the following topics: condition surveys and assessment of deterioration of concrete structures; repair materials and strategies; compatibility aspects; structural requirements and procedures for rehabilitation; durability and repair audits; service life predictions; economics of repair and life-cycle costing; practical and contractual aspects. Strengthening systems; FRP design and application are also covered.

Lecture times: 40 hours (1 week block lectures).

DP requirements: Attendance of lectures and practicals, submission of assignments and project reports.

Assessment: Coursework 50%, examination 50%.
CIV5121Z DESIGN & MODELLING OF WATER DISTRIBUTION SYSTEMS
20 NQF credits at HEQSF level 9
Convener: Professor JE Van Zyl
Course entry requirements: None
Course outline:
The aim of this course is to provide a structured and practical introduction to the design and modelling of water distribution systems. Topics include: Components of water transport and distribution systems. Water Demand: categories, patterns, calculation, forecasting. Hydraulics of Pipe Flow: basic equations, single pipe calculation, branched and looped networks, system-and pump characteristics and pressure dependent demand. Hydraulics of storage and pumps. Main components of Hydraulic Design: design parameters, choice of supply scheme and network layouts. Engineering design: choice of pipe materials, valves and other equipment. Pumps: review of pump types and their applications, design of pumping stations, power requirements and energy consumption, auxiliary equipment. Hydraulic modelling of distribution systems.
DP requirements: None
Assessment: Design assignment 100%.

CIV5122Z ADVANCED SOIL MECHANICS
16 NQF credits at HEQSF level 9
Convener: FC Chebet
Course entry requirements: Suitable undergraduate degree qualification in an engineering, geosciences or geological field.
Course outline:
This course aims to provide extensive insight and depth to students’ understanding of the theoretical background involved in the design of geotechnical systems in order to facilitate critical thinking in geotechnical analyses. It covers advanced concepts and theories in soil mechanics fundamental to geotechnical engineering such as; shear strength of soils; stress-strain behaviour; drained and undrained shear strength; stress paths; critical state soil mechanics, failure criteria; constitutive models soil deformation analysis; stress distribution in soil; settlement of soil; and consolidation theory.
Lecture times: 40 hours (1 week block lectures).
DP requirements: None
Assessment: Coursework 30%, examination 70%.

CIV5123Z CONTAMINATED LAND AND REMEDIATION
Not offered in 2017
16 NQF credits at HEQSF level 9
Convener: Dr D Kalumba
Course entry requirements: Suitable undergraduate degree qualification in an engineering, geosciences or geological field.
Course outline:
This course aims to create awareness of the occurrence of and risks posed by contaminants in contaminated sites and remediation issues, and to develop basic engineering skills and knowledge required to identify appropriate remediation methods for contaminated land and waste disposal activities. It covers the problems associated with contaminated lands that arise from the unmanaged release of contaminants into the environment. Selected topics include: contaminated land definition; legal framework governing contaminated lands; contaminant types and transportation mechanisms, risk assessment procedures related to contaminated lands, site investigation and monitoring related to contaminated lands and remediation, and waste disposal methods.
Lecture times: 40 hours (1 week block lectures).
DP requirements: None
Assessment: Coursework 30%, examination 70%.
CIV5124Z GEOSYNTHETICS ENGINEERING
Not offered in 2017
16 NQF credits at HEQSF level 9
Convener: Dr D Kalumba
Course entry requirements: Suitable undergraduate degree qualification in an engineering, geosciences or geological field.
Course outline:
This course aims to introduce advanced students to geosynthetics and their applications in the built environment and covers important considerations in the use of geosynthetics to solve civil engineering problems. It includes methods of analysis, design, construction and field monitoring of structures constructed with geosynthetics. Topics include the behaviour and interaction of these materials in filtration, drainage, separation, reinforcement, erosion control and barrier functions.
DP requirements: None
Assessment: Coursework 30%, examination 70%.

CIV5125Z LATERAL EARTH SUPPORTS
Not offered in 2017
16 NQF credits at HEQSF level 9
Convener: Dr D Kalumba
Course entry requirements: Suitable undergraduate degree qualification in an engineering, geosciences or geological field.
Course outline:
This course aims to introduce students to the analysis of lateral earth pressures, various earth retention systems and its applicability, limitations and design. The course provides knowledge and tools for design and analyses of earth structures and earth retention systems. The selection, design and performance of earth retention structures used for support of fills and excavations will be covered as well as theory related to earth pressures and soil reinforcement.
Lecture times: 40 hours (1 week block lectures).
DP requirements: None
Assessment: Coursework 50%, examination 50%.

CIV5126Z SLOPE STABILITY
Not offered in 2017
16 NQF credits at HEQSF level 9
Convener: Dr D Kalumba
Course entry requirements: Suitable undergraduate degree qualification in an engineering, geosciences or geological field.
Course outline:
This course aims to demonstrate the application of concepts, principles and theories of slopes and to understand the different slope stabilization techniques and its applicability and limitations. The course focuses on stability of natural slopes and stability considerations related to man-made cuts and fills. Emphasis will be on the conditions up to and until the slip is initiated. Students will be introduced to different slide mechanisms, the conditions of their occurrence, and the theories and principles governing stability of slopes. The course will also include other important aspects such as: field investigations to obtain input for slope stability analysis; slope stability analysis programmes; slope monitoring techniques and slope stabilisation methods.
Lecture times: 40 hours (1 week block lectures).
DP requirements: None
Assessment: Coursework 50%, examination 50%.

CIV5127W DISCRETE CHOICE MODELLING AND STATED CHOICE SURVEY
20 NQF credits at HEQSF level 9
Convener: Associate Professor M Zuidgeest
Course entry requirements: None
Course outline:
This course will study the specification, estimation, and application of discrete choice models as well as the design of stated choice experiments. Day 1: Introduction to choice modelling and multinomial logit, Data & estimation, Analysis of results and specification testing, Estimation of logit models (Exercise). Day 2: Nested logit & other GEV models, Estimation of GEV models (Exercise), Latent class, mixed logit & simulation based estimation, Estimation of latent class & mixed logit (Exercise). Day 3: Model applications: sampling, forecasting and appraisal, Model fitting exercise (Exercise), Alternative models and examples, Case studies in South Africa I. Day 4: Stated choice surveys, Generating a design (Exercise), Drawbacks of orthogonal designs. Day 5: Efficient designs, Generating efficient designs (Exercise), Case studies in South Africa II.

CIV5128Z PRESSURE MANAGEMENT IN WATER DISTRIBUTION SYSTEMS
Not offered in 2017
20 NQF credits at HEQSF level 9
Convener: Professor K van Zyl
Course entry requirements: None
Course outline:
This course aims to teach theory and application of water losses and pressure management in water distribution systems. Topics include: water loss components and methods, pressure and leakage, impact of pressure on other network parameters, soil-leak interaction, pressure management zones, pressure control, night flow analysis and pressure-leakage parameter estimation.
DP requirements: Attend all contact activities and submit all assignments on time.
Assessment: Coursework 50%, examination 50%.

CIV5129W GEOTECHNICAL ENGINEERING PROJECT
45 NQF credits at HEQSF level 9
Convener: Dr D Kalumba
Course outline:
The aim of the course is to offer students an opportunity to undertake a case study project in which they are able to develop skills in analysing and providing solutions to typical geotechnical engineering problems encountered in the field. The project is intended to provide a platform for the students to put into practice the methodological and technical competencies acquired during the taught course work component of the programme. A statement of objectives of the geotechnical engineering project will be agreed upon, and the course of study will be guided by the supervisor. The programme will involve the student in about 450 hours of work, and a written output in the form of a report is submitted.
DP requirements: None
Assessment: Project report 100%.

CIV5131Z RESEARCH DESIGN AND METHODOLOGY FOR CIVIL ENGINEERS
16 NQF credits at HEQSF level 9
Convener: Associate Professor M Zuidgeest
Course entry requirements: None
Course outline:
This course aims to develop conceptual skills for conducting research at the master’s level. Topics include: the scientific method, induction and deduction, inference, statistical thinking and ethics, as well as technical skills which include technical writing, searching and interpretation of scientific literature, proper use of citations, and communication of research outputs.
Lecture times: 40 hours (1 week block lectures).
DP requirements: None
Assessment: Coursework 100%.
CIV5132Z TRANSPORT DEMAND ANALYSIS AND PROJECT ASSESSMENT
20 NQF credits at HEQSF level 9
Convener: Associate Professor M Vanderschuren
Course entry requirements: None
Course outline:
This course aims to develop an understanding of transport demand analysis and project assessment. Topics include: travel data collection and survey design; data processing and analysis; the link between methodological approaches to transport analysis and the analytical questions raised by different policy environments; theoretical and philosophical backgrounds of assessment and evaluation methods; and techniques for the assessment and evaluation of urban transport proposals.

CIV5133Z TRANSPORT MODELLING
20 NQF credits at HEQSF level 9
Convener: Associate Professor M Zuidgeest
Course entry requirements: None
Course outline:
This course aims to develop an advanced understanding of transport modelling principles and skills in working with these models. Topics include: transport modelling types and scales; theory of travel demand modelling, including the four-step transport model (i.e. trip generation, trip distribution, mode choice and traffic assignment); output analysis; land use – transport interaction models, as well as theory of traffic flow dynamics, including capacity assessment, LOS assessment, shockwave analysis, dynamic traffic management and elementary traffic control design. The course ends with a discussion about the link between models and the analytical questions raised by different policy environments.

CIV5134W MASTERS DISSERTATION TRANSPORT STUDIES
120 NQF credits at HEQSF level 9
Course outline:
The dissertation should incorporate any or all of the following: a research project of a theoretical or practical nature; a critical review of a specified topic based upon a comprehensive search of the literature or available data; development of an item of equipment or a technique involving novel features or advanced design; or any other study acceptable to the Faculty.

CIV5135W TRANSPORT PLANNING AND ENGINEERING METHODS PROJECT
25 NQF credits at HEQSF level 9
Convener: Associate Professor M Zuidgeest
Course entry requirements: None
Course outline:
This course aims to offer students an opportunity to undertake a research project in which students are able to develop and enhance skills in a selected area of professional practice. The research would involve undertaking a critical investigation of the origins, rationale, and debates surrounding the particular professional practice, and the necessary activities associated with applying the practice and reflecting on how it might be improved.

CIV6000W PHD IN CIVIL ENGINEERING
360 NQF credits at HEQSF level 10
Course outline:
A PhD thesis is required to be an original, coherent and consistent body of work which reflects the candidate’s own efforts. The thesis may not be more than 80 000 words. A candidate will undertake research, and such advanced coursework as may be required, under the guidance of a supervisor or supervisors appointed by Senate.
DP requirements: None
Assessment: Written work counts 100%.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV9000Z</td>
<td>INTERNATIONAL AFFILIATE 2 MONTHS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CIV9001Z</td>
<td>INTERNATIONAL AFFILIATE 2-4 MONTHS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CIV9002Z</td>
<td>INTERNATIONAL AFFILIATE 4-6 MONTHS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CIV9003Z</td>
<td>INTERNATIONAL AFFILIATE 6-12 MONTHS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CIV9004Z</td>
<td>POSTDOCTORAL FELLOW</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>END5050X</td>
<td>MASTERS JOURNAL PAPER REQUIREMENT</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

Course outline:
The aim of submitting a research paper for the masters’ degree is to develop an understanding of what is required for the publication of research findings. To this end a candidate shall submit a summary of the key aspects of the dissertation, presented in the form of a paper which is, potentially, of publishable standard, approved by a Panel of Assessors. This is a requirement for candidates submitting either a 180 or 120 credit dissertation for the following degrees: MSc in Construction Economics and Management, MSc(Eng), MSc(ProjMan), MPhil, MSc in Property Studies. Refer to the appropriate degree rules.

DP requirements: None
CONSTRUCTION ECONOMICS AND MANAGEMENT

The Department offers the following Postgraduate degree programmes:

- Construction Management
- Quantity Surveying
- Property Studies
- Project Management

The Department is housed on Level 5 of the Snape Building, opposite Engineering Mall, off Madiba Circle, Upper Campus.

Staff

Associate Professor and Head of Department:
KA Michell, BSc(QS) MPhil Cape Town PhD Salford PrQS PMAQS MRICS MSAFMA

Professors:
PA Bowen, BSc(QS) BCom Natal MSc(Construction Management) Heriot-Watt PhD UPE PrQS PMAQS FRICS FCIOB PrCM PrCPM PrValuer
KS Cattell, BSc(QS) UPE MPhil Cape Town PrQS PMAQS MRICS MSAPCI MSAFMA

Associate Professors:
MM Mooya, BSc(Land Economy) Copperbelt MPhil(Land Economy) Cantab PhD(Real Estate) Pret
F Viruly, BA(Hons) Witwatersrand MA(Dev Econ) Kent FRICS
A Windapo, BSc(Building) IfE MSc(Construction Management) PhD Lagos FNIOB PrCPM

Emeritus Professors:
BG Boaden, BSc(QS) Witwatersrand MBA British Columbia PhD Witwatersrand
AJ Stevens, MSc(Building) Cape Town PhD UPE

Adjunct Professors:
GJ Paddock, BA LLB Cape Town AArb
GJ Snyman, BCom MCom Stell PhD Cape Town FCIOB FIHSA

Senior Lecturers:
E Edwardes, BSc BSc(QS) MSc(Project Management) Pret PrQS PMAQS
K Evans, BSc(QS) MSc(Property Studies) Cape Town PrQS PMAQS
CI Jay, BSc(Hons)(Geology) Cardiff/MBL UNISA PMP(PMI)
K Le Jeune, BSc(QS) MSc(Property Studies) Cape Town PrQS PMAQS MRICS
MW Massyn, BSc(Building) UPE FCIOB
RPT McGaffin, BSocSc Cape Town MCRP Cape Town MPhil Cantab
N-T Tuan, BSc(Eng) Chung Cheng Institute of Technology MEng Pret PhD Cape Town INFORMS Taiwan Chapter

Lecturers:
SD Nurick, BCom BSc(Hons)(Property Studies), MPhil Cape Town MRICS
U Ordor BSc(Architecture) Jos MSc (Architecture) Jos MNIA MSc (Property Studies) Cape Town

Academic Development Lecturer:
A Street BSc (QS)(Hons) Cape Town PrQS PMAQS
Departmental Manager:
JM Thompsett

Administrative Officers:
M Fagodien (Postgraduate)
A Haddon (Undergraduate and Honours)

Administrative Assistants:
J Breda (Finance)

Reception and General Administration:
V Daries

Departmental Assistant:
M Neutt

Postgraduate Programmes
Please note that the offering of all postgraduate programmes is subject to a minimum student enrolment.
A subminimum of 40% applies to the examination and coursework components of all Honours level courses with a CON course code.
A subminimum of 50% applies to the examination and coursework components of all Postgraduate Diploma and Master’s level courses with a CON course code.

Honours Programmes

Bachelor of Science (Honours) in Construction Management
[EH002CON02]

Programme Convener::
Ms K Le Jeune, BSc(QS) MSc(Property Studies) Cape Town PrQS PMAQS MRICS

The curriculum of the BSc(Hons) in Construction Management programme equips graduates to: identify, analyse and solve problems in the field of construction assembly and management of the process; perform a number of managerial roles within a constructor organisation, after an appropriate period of practical experience; work effectively in teams; and undertake research and produce reports. The aims of the degree are to provide employable management graduates to the construction industry; to fully satisfy the criteria for accreditation in terms of the requirements of the Chartered Institute of Building (CIOB), the South African Council for the Project and Construction Management Professions (SACPCMP), the Royal Institution of Chartered Surveyors (RICS), and the South African Council for the Quantity Surveying Profession (SACQSP).
A candidate shall complete approved courses of a value required to bring the total to a minimum of 160 credits and shall comply with all the prescribed curriculum requirements.

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC2022S</td>
<td>Management Accounting I</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>CON4030F</td>
<td>Property Studies II</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>CON4033W</td>
<td>Applied Contract Law II</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>CON4038F</td>
<td>Advanced Construction Management</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>CON4039S</td>
<td>Integrated Management Project</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>CON4047W</td>
<td>Research Project</td>
<td>32</td>
<td>8</td>
</tr>
</tbody>
</table>
DEPARTMENTS IN THE FACULTY AND COURSES OFFERED

Number	**Course**	**NQF Credits**	**HEQSF Level**
CON4049S | Construction Innovation | 16 | 8
STA1000F | Statistics 1000 | 18 | 5
CON4035X | Practical training | 0 | 8
Approved elective | | 0 | 0
Total credits | | 148 |

Elective Core Courses (minimum of 12 credits)

Courses totalling a minimum of 12 credits must be chosen of which at least 8 credits shall be at HEQSF level 08:

Number	**Course**	**NQF Credits**	**HEQSF Level**
CON4032F | Measurement & Design Appraisal III | 12 | 8
CON4034W | Professional Practice | 20 | 8
CON4037S | Civil Engineering Measurement | 16 | 8
CON4045F | Housing Development & Management I T | 16 | 8

Bachelor of Science (Honours) in Quantity Surveying [EH004CON05]

Programme Convener:
Ms K Le Jeune, BSc(QS) MSc(Property Studies) Cape Town PrQS PMAQS MRICS

The curriculum of the BSc(Hons) in Quantity Surveying programme equips graduates to: undertake financial planning and control of new and existing facilities; undertake property development and property portfolio management; value property; apply appropriate quantity surveying techniques to building and civil engineering projects; perform appropriate professional quantity surveying management functions; work effectively in teams; and undertake research and produce reports. The aims of the degree are to provide employable professional graduates to the Quantity Surveying Profession; to fully satisfy the criteria for accreditation in terms of the requirements of the Chartered Institute of Building (CIOB), the South African Council for the Quantity Surveying Profession (SACQSP); and the Royal Institution of Chartered Surveyors (RICS).

A candidate shall complete approved courses of a value required to bring the total to a minimum of 164 credits and shall comply with all the prescribed curriculum requirements.

Core Courses

Number	**Course**	**NQF Credits**	**HEQSF Level**
ACC2022S | Management Accounting I | 18 | 6
CON4030F | Property Studies II | 16 | 8
CON4032F | Measurement & Design Appraisal III | 12 | 8
CON4033W | Applied Contract Law II | 16 | 8
CON4034W | Professional Practice | 20 | 8
CON4047W | Research Project | 32 | 8
CON4037S | Civil Engineering Measurement | 16 | 8
STA1000F | Statistics 1000 | 18 | 5
CON4035X | Practical Training | 0 | 8
Approved electives | | 0 | 0
Total credits | | 148 |

Elective Core Courses

Courses totalling a minimum of 16 credits must be chosen of which at least 8 credits shall be at HEQSF level 8:

Number	**Course**	**NQF Credits**	**HEQSF Level**
CON4038F | Advanced Construction Management | 16 | 8

Bachelor of Science (Honours) in Property Studies
[EH003CON03]

Associate Professor and Programme Convener:
MM Mooya, BSc(Land Economy) Copperbelt MPhil(Land Economy) Cantab PhD(Real Estate) Pret

The curriculum of the BSc(Hons) in Property Studies programme equips graduates to: apply advanced methods of valuation and value special properties; manage property and buildings; plan, control and report costs associated with property management; know and apply legislation and case law relevant to the valuation of fixed property; define a research problem, undertake empirical research, analyse data and report research findings; and apply skills in an elective area of speciality in statistics, management, economics or law.

The aim of the degree is to fully satisfy the criteria for accreditation in terms of the requirements of the South African Council for the Property Valuers’ Profession (SACPVP). A candidate shall complete approved courses of a value required to bring the total to a minimum of 144 credits and shall comply with all the prescribed curriculum requirements.

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON4041S</td>
<td>Advanced Property Studies A</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>CON4042H</td>
<td>Advanced Property Studies B</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>CON4043S</td>
<td>Applied Property Law</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>CON4045F</td>
<td>Housing Development & Management IT</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>CON4047W</td>
<td>Research Project</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>CON4048S</td>
<td>Advanced Property Studies C</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

Approved electives

| Approved electives | 0 | 0 |

Sub Total credits 144

Master’s Programmes

Master of Science in Property Studies
[EM013CON03]

Associate Professor and Programme Convener:
KA Michell, BSc(QS) MPhil Cape Town PhD Salford PrQS PMAQS RICS MSAFMA

The primary aim of the Postgraduate Diploma and MSc in Property Studies programmes is to produce graduates with the necessary skills to enter the field of property at a professional managerial level. Students are exposed to the full spectrum of property related disciplines and issues, including: urban land economics; property law; property finance; property development; property valuation; property portfolio management; and facilities management. In addressing each of these areas, a strong emphasis is placed on the development of decision-making skills. The purpose of the research report, only undertaken by candidates for the MSc in Property Studies programme, is to develop advanced research skills.
A candidate for the MSc in Property Studies shall complete approved courses of a value required to bring the total to a minimum of 200 credits and shall comply with all the prescribed curriculum requirements.

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON5010Z</td>
<td>Minor Dissertation Property Studies</td>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td>CON5006Z</td>
<td>Property Development</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CON5007Z</td>
<td>Property Law</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CON5008Z</td>
<td>Urban Land Economics</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CON5009Z</td>
<td>Property Finance</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CON5021Z</td>
<td>Property Portfolio Management</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CON5036Z</td>
<td>Introduction to Research</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>CON5037Z</td>
<td>Research Methodology</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>CON5041Z</td>
<td>Principles of Applied Statistics</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>CON5042Z</td>
<td>Advanced Principles of Applied Statistics</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>CON5043Z</td>
<td>Property Valuation Theory & Practice</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>

Sub Total credits: 200

Elective Core Courses

To achieve registration with SACPVP (South African Council for Property Valuers’ Profession) a student, in addition to the core courses, will have to complete the following core elective.

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON5044Z</td>
<td>Advanced Property Valuation</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>

To qualify as a specialist Corporate Real Estate Manager a student, in addition to the core courses, will have to complete the following core elective.

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON5045Z</td>
<td>Corporate Real Estate Portfolio Management</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>

Master of Science in Project Management

[EM014CON06]

Senior Lecturer and Programme Convenor:
CI Jay, BSc(Hons)(Geology) Cardiff MBL UNISA PMP(PMI)

A candidate for the MSc in Project Management programme shall complete approved courses of a value required to bring the total to a minimum of 200 credits and shall comply with all the prescribed curriculum requirements.

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON5023Z</td>
<td>Minor Dissertation Project Management</td>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td>CON5014Z</td>
<td>Project Management & Systems Theory</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CON5016Z</td>
<td>Project Planning & Implementation</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CON5018Z</td>
<td>Human Resource Management and Interpersonal Communication</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CON5022Z</td>
<td>Total Quality Management in a Project Environment</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CON5029Z</td>
<td>Project Risk Management</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>CON5036Z</td>
<td>Introduction to Research</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>CON5037Z</td>
<td>Research Methodology</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>CON5041Z</td>
<td>Principles of Applied Statistics</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>CON5042Z</td>
<td>Advanced Principles of Applied Statistics</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

Sub Total credits: 180
Elective Courses
Students must select one approved Master’s level 20-credit course, or combination of courses totalling 20 credits, offered by the University.

Elective Course (select 20 credits)

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON5030Z</td>
<td>Project Finance & Procurement</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Approved elective</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total credits</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Doctoral Programmes

Doctor of Philosophy

[ED001CON01]
ED001 Doctor of Philosophy is a Research Degree

Core Course

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON6009W</td>
<td>Thesis</td>
<td>360</td>
<td>10</td>
</tr>
</tbody>
</table>

Course descriptions are set out in the section Courses Offered. The course code abbreviation for Construction Economics and Management is CON.

Course Outlines

CON4030F PROPERTY STUDIES II
16 NQF credits at HEQSF level 8; 4 lectures per week, project(s), seminars, tutorials.

Convener: Ms K Evans

Course entry requirements: CON3033F

Course outline:
This course in property studies aims to develop an understanding of feasibility studies; risk assessment techniques; capital budgeting and sources of finance; the property development process; whole life appraisal; maintenance management; and property valuation methods.

DP requirements: 40% subminimum in both course work and examination

Assessment: Year mark 50%; June examination 2 hours 50%.

CON4032F MEASUREMENT & DESIGN APPRAISAL III

No additional assessment.
12 NQF credits at HEQSF level 8; 4 lectures per week, project(s), seminars, tutorials.

Convener: Ms K Le Jeune

Course entry requirements: CON3012W, CON3031W

Course outline:
This course in measurement and design appraisal covers: Design appraisal, measurement and preparation of tender documentation for complex buildings and specialist installations (electrical and mechanical). The theoretical component involves a study of: (i) critical design appraisal and the improvement of constructability and cost-efficiency; (ii) compiling the Preliminaries Bill; and (iii) descriptive clauses in the Standard System of Measuring of Building Work. The practical component involves the application of the principles of measurement to advanced/unconventional forms of building construction and specialist installations by means of elemental quantification, covering: Bulk Earthworks; Planking, Strutting and Shoring; Piling; Underpinning; Basements;
Electrical Installations; and Mechanical Installations. The practicals require computerised
documentation using measurement software.
DP requirements: 40% subminimum in both course work and examination
Assessment: Year mark 80% ; June oral examination (20%) 30 minutes.

CON4033W
APPLIED CONTRACT LAW II
16 NQF credits at HEQSF level 8; 2 lectures per week, seminar(s).
Convener: Mr T Boxall
Course entry requirements: CML1002F or CML1001F or CML1006S, CON3032W
Course outline:
This course aims to develop an understanding of applied contract law. Topics include: the
Insolvency Act; case studies of construction and building disputes; alternative dispute resolution;
government and new engineering forms of contract; and common international contracts.
DP requirements: 40% subminimum in both course work and examination.
Assessment: Year mark 50% ; November examination 2 hours 50%.

CON4034W
PROFESSIONAL PRACTICE
No additional assessment.
20 NQF credits at HEQSF level 8; First Semester: 4 lectures per week, seminars, tutorials, studio
sessions.Second Semester: Simulated Office Project, studio sessions as required.
Convener: Ms K Le Jeune
Course entry requirements: CON3031W
Co-requisites: CON4032F
Course outline:
This course in professional practice covers: The Quantity Surveying Profession Act (No. 49 of
2000), Rules promulgated under the Act, and the implications of the Code of Conduct for registered
practitioners; the commission; the Quantity Surveyor-Client Agreement; professional liability and
professional indemnity insurance; fee scales; PROCAP; the Quantity Surveying function during the
pre-contract, tender, post-contract, and final account stages: preparation and presentation of cost
plans and Bills of Quantities, administration and adjudication of competitive bids, valuation for
interim payment certificates, recovery statements, valuation of and payment for materials on and
off-site; escalation; preparation and presentation of Final Accounts. Simulated Office project.
DP requirements: 40% subminimum in both course work and examination. Submit Simulated
Office Project Report.
Assessment: Year mark 54.4 % ; June oral examination (45.6%) minimum 30 minutes,

CON4035X
PRACTICAL TRAINING
0 NQF credits at HEQSF level 8
Convener: Ms K Le Jeune
Course outline:
This opportunity to gain practical experience includes 160 hours (4 weeks) of approved experience
employed in any of the built environment disciplines: construction; engineering; housing; property
development and management; quantity surveying; relevant local authority, provincial and national
government departments.
DP requirements: None
Assessment: Complete practical training and complete report.

CON4037S
CIVIL ENGINEERING MEASUREMENT
16 NQF credits at HEQSF level 8; 2 lectures per week, 1 studio session as required.
Convener: Ms K Le Jeune
Course entry requirements: CON3012W, CON4032F
Course outline:
This course aims to develop an understanding of measurement and scheduling of civil engineering construction. The theoretical aspects of the course cover the SANS 1200 specifications and the SANS 10120: Part 4 Typical Schedules of Quantities for: Site Clearance; Earthworks; and Concrete (Structural). The practical component involves the application of the principles of measurement to the elements: Site Clearance; Earthworks; and Concrete (Structural).

CON4038F ADVANCED CONSTRUCTION MANAGEMENT
16 NQF credits at HEQSF level 8; 4 lectures per week, seminars, tutorials, field trip(s).
Convener: Mr M Massyn
Course entry requirements: CON3012W, CON3038W

Course outline:
This advanced course in construction management covers: The concept of project management compared with the management of construction enterprises. Organisational theory and management, organisation structures for enterprises and a major projects. Leadership and motivation on projects. Precontract planning. Production and logistics management. Contractual risk management and contracting strategies. Human relations management including: industrial relations practice; and health and safety requirements.

CON4039S INTEGRATED MANAGEMENT PROJECT
This course is not eligible for additional assessment.
16 NQF credits at HEQSF level 8; 2 lectures per week, field trips, tutorials, seminars.
Convener: Mr M Massyn
Course entry requirements: CON4038F, CON3031W

Course outline:
This integrated management project uses the documents for an actual construction project to, simulate all activities performed during the pre-tender and construction phases of a project such as obtaining bids from suppliers and subcontractors, preparing the estimate, preparing the site layout, preparing all planning activities required; analysing production requirements such as concrete cycles and formwork selection, plant and material management; health and safety risk assessment; financial management such as interim certificate and final account preparation and reconciliation.

CON4041S ADVANCED PROPERTY STUDIES A
16 NQF credits at HEQSF level 8; 4 lectures per week, tutorials.
Convener: Associate Professor M Mooya
Course entry requirements: CON3034F, CON3035S, CON3041F

Course outline:
This advanced course in property studies covers: Expropriation: the legislation; the process; compensation; methods of valuation. Property Valuation: influence of re-zoning on value; valuation of farmland; usually non-negotiable properties; large shopping centres; air space; interest in time-share; leasehold interests; retirement villages; mining rights. Valuation of properties classified as "special" in terms of function, design, construction, or location; market/non-market properties; and properties subject to particular legislation.

Assessment: Year mark 50% ; November examination 2 hours 50%.
CON4042H ADVANCED PROPERTY STUDIES B
16 NQF credits at HEQSF level 8; 4 lectures per week, seminars, field trips.
Convener: Associate Professor K Michell/Mr D Owen
Course entry requirements: CON3034F/S, CON3035S, CON3036W
Course outline:
This course provides an introduction to facilities management. Topics include:
Management of building operations: Operation of building operating systems; building maintenance and repairs; cleaning services; security services; cost control and financial reporting. Real property management: Introduction to property management; role of property management; maintenance of the long-term property acquisition/lease programme; purchase of land and buildings; principles of property maintenance; leasing and insurance; leasing non-owned premises; marketing and leasing of owned premises; lease management; service and management of tenants; management of residential, group housing, sectional title, office, shopping centre and industrial developments; cost control and reporting. Office Facility Planning: Determining workplace area standards; specifying common facilities; programming short- and long-term office space needs; maintaining the office space inventory; and space allocation to individuals and user-groups.
DP requirements: 40% subminimum in both course work and examination
Assessment: Assignment 65% November examination 2 hours 35%.

CON4043S APPLIED PROPERTY LAW
16 NQF credits at HEQSF level 8; 4 lectures per week, tutorials.
Convener: Mr T Boxall
Course entry requirements: CML2011S (or equivalent).
Course outline:
This course in applied contract law covers: A detailed study of the statutes and ordinances affecting property development and valuation. A detailed study of case law relating to: malafides of valuation court; what constitutes immovable property; method of valuation; separate valuations of land and buildings; valuation of an interest in land; restrictive conditions effect on value; Expropriation Act; expropriation in terms of provincial ordinances; valuation of subdivided property; and method of valuation.
DP requirements: 40% subminimum in both course work and examination.
Assessment: Year mark 50%; November examination 2 hours 50%.

CON4045F HOUSING DEVELOPMENT & MANAGEMENT I T
16 NQF credits at HEQSF level 8; 4 lectures per week, seminars, tutorials.
Convener: Mr R McGaffin
Course outline:
This course aims to conceptualise housing as a multi-dimensional asset. Students will be guided to: define the housing problem and assess various policy intervention undertaken internationally and locally to date; based on the problem statement propose sound interventions drawing on theory and evidence, and undertake a financial viability study of a housing project.
DP requirements: 40% subminimum in both course work and examination; Attendance and satisfactory participation in all contact sessions; Satisfactory participation in all group work; Submission of all assignments as per due dates.
Assessment: Year mark 50% ; June examination 2 hours 50%.

CON4047W RESEARCH REPORT
This course is not eligible for additional assessment.
32 NQF credits at HEQSF level 8; Seminar(s).
Convener: Professor PA Bowen/Associate Professor KA Michell
Course entry requirements: CON1019F, STA1000S
Course outline:
This course aims to provide an understanding of the research process. Topics include: selection of research problem; preparation of the research proposal; conducting empirical research; analysis of findings; drawing conclusions; making recommendations; and presentation of a research report.

DP requirements: Submission of a satisfactory research proposal

Assessment: November examination - Research report 100%

CON4048F ADVANCED PROPERTY STUDIES C
16 NQF credits at HEQSF level 8; 4 lectures or tutorials per week.
Convener: Ms K Evans
Course entry requirements: CON3034F/S, CON3035S, CON3041S
Course outline:
This advanced course in property studies covers: Modern portfolio theory: portfolio risk and return; applied portfolio theory; index models; portfolio construction (structure, selection and management). Property Portfolio: compiling an efficient property portfolio; IPD and property data sources; trading properties; diversification strategies. The property component of institutional investor portfolios; the property listed sector including property unit trusts and property loan stocks; property market research and analysis; and quantitative techniques for analysis of market data.
DP requirements: 40% subminimum in both course work and examination
Assessment: Year mark 50%; November examination 2 hours 50%.

CON4049S CONSTRUCTION INNOVATION
16 NQF credits at HEQSF level 8; 2 lectures per week, field trip(s), tutorials, seminars.
Convener: Associate Professor A Windapo
Course entry requirements: CON3038W, CON3012W
Course outline:
This course aims to develop an understanding of innovation in construction. Topics include: cycles of innovation; dissemination of technology; relationship between technology, economic practice and structures of the industry using examples such as lean production, intelligent buildings, standardisation and pre-assembly, design management and sustainable construction, and entrepreneurship.
DP requirements: 40% subminimum in both course work and examination.
Assessment: Year mark 50%; November examination 2 hours 50%.

CON5006Z PROPERTY DEVELOPMENT
20 NQF credits at HEQSF level 9; one week block lectures.
Convener: Associate Professor F Viruly
Course outline:
This course in property development covers: investment evaluations; property development evaluation, incorporating: environmental impact assessments; land assembly and servicing; economic viability analysis; management and marketing of property developments; risk assessment; and whole life appraisal.
DP requirements: 50% subminimum in both course work and examination.
Assessment: Three hour examination 50%, assignments 50%.

CON5007Z PROPERTY LAW
20 NQF credits at HEQSF level 9; one week block lectures.
Convener: Mr T Boxall
Course outline:
This course aims to develop an understanding of property law. Topics include: the meaning and function of law and legal rules; the main divisions of the law; the structure of the courts, officers of the courts and different court procedures; sources of South African law; basic concepts of Private Law; an outline of South Africa's Constitution; the Bill of Rights and Land Use; the Expropriation
Act; the impact of the environmental clause and environmental legislation on land use; sectional title and share block schemes; general principles of the law of contract; specific or applied contracts: sale and lease; forms of security: contractual and property rights; Insolvency law: the effect of insolvency on property and uncompleted contracts; commercial agency: estate agents; alternative dispute resolution; and case studies.

DP requirements: 50% subminimum in both course work and examination.

Assessment: Three hour examination 50%, assignments 50%.

CON5008Z URBAN LAND ECONOMICS
20 NQF credits at HEQSF level 9; one week block lectures.

Convener: Associate Professor F Viruly

Course outline:
This course in urban land economics covers: urban economics and urban problems; the urbanization process; the urban hierarchy; urban rent; theories of urban spatial structure; location theory; and problems in developing countries.

DP requirements: 50% subminimum in both course work and examination.

Assessment: Three hour examination 50%, assignments 50%.

CON5009Z PROPERTY FINANCE
20 NQF credits at HEQSF level 9; one week block lectures.

Convener: Ms K Evans

Course outline:
This course in property finance is an application of business finance theory to property. Topics include: mathematics of finance; property investment decision-making; capital budgeting; financing decision and capital structure; capital markets; sources and flows of capital for property investments; and types of financial instruments.

DP requirements: 50% subminimum in both course work and examination

Assessment: Three hour examination 50%, assignments 50%.

CON5010Z MINOR DISSERTATION PROPERTY STUDIES
60 NQF credits at HEQSF level 9

Convener: Associate Professor KA Michell

Course entry requirements:

Course outline:
Students select a research topic, prepare a proposal, undertake empirical research, analyse the findings, draw conclusions and present a minor dissertation.

DP requirements: None

Assessment: Research Report

CON5014Z PROJECT MANAGEMENT & SYSTEMS THEORY
20 NQF credits at HEQSF level 9; one week block lectures.

Convener: Mr M Massyn

Course outline:
This course is an overview of the project management knowledge areas, project management processes, and the relationship of project management to other management disciplines. The project management body of knowledge and its place in the trans-disciplinary study of the abstract organisation of projects, investigation of both the principles common to all complex projects; and the models which can be used to describe them are investigated. Emphasis is placed on real systems that are open to, and interact with, their environment. The relationship between the business environment and the project environment is also covered.

DP requirements: 50% subminimum in both course work and examination.

Assessment: Three hour examination 50%, assignments 50%.
DEPARTMENTS IN THE FACULTY AND COURSES OFFERED

CON5016Z PROJECT PLANNING & IMPLEMENTATION

20 NQF credits at HEQSF level 9; one week block lectures.
Convener: Mr M Massyn
Course outline:
This course in project planning and implementation covers: the need for planning which includes the rules for planning and control; scope management, project strategy, project methodology; project scheduling techniques; and change management and project integration.
DP requirements: 50% subminimum in both course work and examination.
Assessment: Three hour examination 50%, assignments 50%.

CON5018Z HUMAN RESOURCE MANAGEMENT & INTERPERSONAL COMMUNICATION

20 NQF credits at HEQSF level 9; one week block lectures.
Convener: Mr I Jay
Course outline:
This course aims to develop an understanding of the human resource management needs of project management, changes in employment practice, interfacing with stakeholders, group dynamics, leadership, motivation methods of achieving objectives through others in a people intensive environment, communication, conflict resolution, negotiation, ethics and culture and the management organisation structures used in project teams.
DP requirements: 50% subminimum in both course work and examination.
Assessment: Three hour examination 50%, assignments 50%.

CON5021Z PROPERTY PORTFOLIO MANAGEMENT

20 NQF credits at HEQSF level 9; one week block lectures.
Convener: Associate Professor F Viruly
Course outline:
This course in property portfolio management covers: Portfolio Management: the property cycle; the economic cycle; modern portfolio theory; the property portfolio. Operational Property/Asset Management: introduction to property management; legal aspects/tenant issues; maintenance/services; investment strategy and value; current trends; case studies. Strategic property/asset management: shopping centre management: management; leasing; financial control. Facilities Management: space planning and management; relocation; maintenance management and life cycle costing; energy management; environmental issues; and outsourcing.
DP requirements: 50% subminimum in both course work and examination.
Assessment: Three hour examination 50%, assignments 50%.

CON5022Z TOTAL QUALITY MANAGEMENT IN A PROJECT ENVIRONMENT

20 NQF credits at HEQSF level 9; one week block lectures.
Convener: Dr N Tuan
Course outline:
This course aims to develop an understanding of total quality management in a project environment and includes: Total Quality Management as a set of management processes and systems and the application of TQM in project environments; new product development, value engineering, safety, and health and welfare.
DP requirements: 50% subminimum in both course work and examination.
Assessment: Three hour examination at end of module 50%, assignments 50%.

CON5023Z MINOR DISSERTATION PROJECT MANAGEMENT

60 NQF credits at HEQSF level 9
Convener: Dr N Tuan
Course entry requirements:
Course outline:
Students select a research topic, prepare a proposal, undertake empirical research, analyse the findings, draw conclusions and present a minor dissertation.

DP requirements: None

Assessment: Written work counts 100%.

CON5024W DISSERTATION CONSTRUCTION ECONOMICS & MANAGEMENT
180 NQF credits at HEQSF level 9
Convener: TBA

Course outline:
Students select a research topic, prepare a proposal, undertake empirical research, analyse the findings, draw conclusions and present a dissertation.

DP requirements: None

Assessment: Written work counts 100%.

CON5025W DISSERTATION CONSTRUCTION ECONOMICS & MANAGEMENT
120 NQF credits at HEQSF level 9
Convener: TBA

Course entry requirements: CON5040Z DP

DP requirements: None

CON5029Z PROJECT RISK MANAGEMENT
20 NQF credits at HEQSF level 9; one week block release lectures.
Convener: Dr N Tuan

Course outline:
This course in project risk management covers: the nature of risks and the nature of projects; risk perceptions and the communication of risk; systematic risk management; creating a project risk management framework; establishing risk registers and reviewing risk management performance.

DP requirements: 50% subminimum in both course work and examination

Assessment: Three hour examination at end of module 50%, assignments 50%.

CON5030Z PROJECT FINANCE & PROCUREMENT
20 NQF credits at HEQSF level 9; one week block release lectures.
Convener: Mr I Jay

Course outline:
This course in project finance and procurement covers: Principles of cost, and financial models, including the use of net present value, the capital asset pricing model, and real options. The development of a cost benefit analysis, and business case. Procurement, tendering, cost control, project contracts and project marketing are also included.

DP requirements: 50% subminimum in both course work and examination.

Assessment: Three hour examination 50%, assignments 50%.

CON5033Z DISSERTATION PROJECT MANAGEMENT
120 NQF credits at HEQSF level 9
Convener: Mr I Jay

Course entry requirements: CON5040Z

CON5034Z DISSERTATION PROPERTY STUDIES
120 NQF credits at HEQSF level 9
Convener: TBA
Course entry requirements: CON5040Z

CON5036Z INTRODUCTION TO RESEARCH
4 NQF credits at HEQSF level 9
Convener: Professor P Bowen/Mr I Jay
Course outline:
this course provides guidance in: research and writing skills; plagiarism; research ethics; critical analysis of literature; creating an argument; writing in an academic style; and referencing conventions.
DP requirements: None
Assessment: One-and-a-half-hour examination 100%.

CON5037Z RESEARCH METHODOLOGY
6 NQF credits at HEQSF level 9; half week block lectures.
Convener: Mr I Jay
Course entry requirements: CON5036Z
Course outline:
This course aims to develop an understanding of research methodology, the research experience; knowledge and problems; the proposal chapter; designing the research; theoretical frameworks; overview of research methods - from quantitative to qualitative; case studies; writing the literature review, data presentation and analysis; and concluding the research.
DP requirements: 100% attendance at lectures in block week.
Assessment: Evaluation of Research Proposal 100%.

CON5038Z PROPERTY DEVELOPMENT & FINANCE
20 NQF credits at HEQSF level 9; one week block lectures.
Convener: TBA
Course outline:
DP requirements: 50% subminimum in both coursework and examination.
Assessment: Three hour exam 50%, assignment 50%.

CON5039Z PROJECT IMPLEMENTATION & MANAGEMENT
20 NQF credits at HEQSF level 9; one week block lectures.
Convener: TBA
Course outline:
This course aims to develop an understanding of project implementation and management. Topics include: Programme and project management: work breakdown structures; project cycle management; budgeting and cash flows; developing indicators; monitoring and evaluation systems and cycles. Procurement Management: principles; modes; brief writing; control of outsourced works; control of outsourced services; monitoring reporting. Institutional Aspects: legislative requirements and options; operating in the context of intergovernmental relations; contractual forms and options; contract management; government budgeting and project packaging; managing integration and IDPs. Planning and project cycle methodologies.
DP requirements: None
Assessment: Three hour exam 50%; assignment 50%.
CON5040Z DISSEYATION PREPARATION
0 NQF credits at HEQSF level 9
Convener: TBA
Course outline:
The aim of this course is to allow a student to undertake preparatory work for the master’s dissertation. Work required includes literature searches and reviews; identification of the research problem, objectives and hypothesis; consideration of research methodology; planning for the active research phase; and ensuring that research infrastructure (e.g. apparatus etc.) is or will be in place. The student should maintain regular contact with his/her supervisor in order to show evidence of suitable progress towards these aims. The supervisor must indicate satisfactory fulfilment of the course aims prior to the student proceeding to the dissertation.
DP requirements: None

CON5041Z PRINCIPLES OF APPLIED STATISTICS
4 NQF credits at HEQSF level 9
Convener: Professor P Bowen
Course entry requirements: Knowledge of Excel.
Course outline:
This course in applied statistics covers: Data presentation: Identifying an appropriate population; drawing a sample from the population; organising data; discrete and continuous data types; graphical presentation of data. Descriptive statistics: Exploratory data analysis and summary statistics. Applied mathematics: Simple interest; equivalence; compound interest; present value; annuities; general annuities; sinking funds; and amortization.
DP requirements: None
Assessment: One-and-a-half-hour examination 100%.

CON5042Z FURTHER APPLIED STATISTICS (ADVANCED PRINCIPLES)
6 NQF credits at HEQSF level 9
Convener: Professor P Bowen
Course entry requirements: CON5041Z
Course outline:
This course in advanced principles of applied statistics covers: Design of a questionnaire: Defining the "target" population, drawing a sample from the population, organising the data into an appropriate format for further analysis. Presenting the results: Summarizing the data, and interpreting the results. Statistical methods: Contingency tables; (Chi Square tests); multiple regression; t-test and Anova; and confidence interval equivalence.
DP requirements: Class attendance and submission of all worksheets, projects and assignments.
Assessment: Continuous assessment

CON5043Z PROPERTY VALUATION THEORY & PRACTICE
20 NQF credits at HEQSF level 9
Convener: Ms K Evans/Associate Professor M Mooya
Course outline:
This course in property valuation theory and practice covers: The Valuer; Valuation Theory - concepts and historical development; Accuracy of Valuations; The Surveyor General; Register of Deeds; Local Authorities; Town Planning Schemes; the Valuer's Records; Factors Affecting Supply and Demand in the Property Market; Different Types of Fixed Property; Factors Influencing the Value of Property; Approaches to the Valuation of Property; the Valuation Report. Potential and its Influence on Value: Legal Concept of Potential; Economic Concept of Potential; Potential for an Alternative Use; Redevelopment Potential; Quantifying the Influence of Potential on Value; Highest and Best Use of a Property; Under-improved Property; Over-improved Property; "Wrong" or Inappropriate Development; Influence of Re-zoning on Value. Methods of Valuation I: Sales, Cost and Income Methods of Valuation. Valuation of Residential Properties: Definition of a

DP requirements: 50% subminimum in both course work and examination.

Assessment: Three hour examination 50%, assignments 50%.

CON5044Z ADVANCED PROPERTY VALUATION

20 NQF credits at HEQSF level 9

Convener: Ms K. Evans

Course entry requirements: CON5043Z

DP requirements: 50% subminimum in both course work and examination.

Assessment: Three hour examination 50%; assignments 50%.

CON5045Z CORPORATE REAL ESTATE PORTFOLIO MANAGEMENT

Not offered in 2017

20 NQF credits at HEQSF level 9

Convener: TBA

Course outline: This course in corporate real estate portfolio management covers: Strategy and Strategic Alignment: Understanding corporate strategy drivers and their alignment to the portfolio; Defining portfolio objectives; Corporate Real Estate and competitive advantage. Corporate Real Estate Portfolio Management: A process for managing corporate exposures; Risk management in the CRE environment; Demand planning, site selection and the role and cost of flexibility; Lease v own decisions; The impact of workplace strategy and design; Total occupancy cost management; Benchmarking and portfolio performance management. The Impact of Property Exposures on Corporate Financial Statements: Accounting principles; Financial reporting principles and areas of direct impact; and Impact of CRE on shareholder value.

DP requirements: 100% attendance of block week lectures. Submission of all assignments.
Assessment: A three hour examination 50% and assignments 50%.

CON6009W THESIS

360 NQF credits at HEQSF level 10

Convener: TBA

Course outline:
A PhD thesis is required to be an original, coherent and consistent body of work which reflects the candidate’s own efforts. The thesis may not be more than 80 000 words. A candidate will undertake research, and such advanced coursework as may be required, under the guidance of a supervisor or supervisors appointed by Senate.

DP requirements: None

Assessment: Written work counts 100%.

END5050X MASTERS JOURNAL PAPER REQUIREMENT

0 NQF credits at HEQSF level 9

Course outline:
The aim of submitting a research paper for the masters’ degree is to develop an understanding of what is required for the publication of research findings. To this end a candidate shall submit a summary of the key aspects of the dissertation, presented in the form of a paper which is, potentially, of publishable standard, approved by a Panel of Assessors. This is a requirement for candidates submitting either a 180 or 120 credit dissertation for the following degrees: MSc in Construction Economics and Management, MSc(Eng), MSc(P ProjMan), MPhil, MSc in Property Studies. Refer to the appropriate degree rules.

DP requirements: None
The Department offers the following specialisations in:

Control Engineering
Computational Electronics
Image Processing and Vision Systems
Instrumentation
Machines and Power Electronics
Nuclear Power
Power Engineering
Remote Sensing and Radar
Robotics
Telecommunications
Space Technology

The Department of Electrical Engineering is located on the 4th floor of the Menzies Building, Library Road, Upper Campus, Rondebosch.

Website: www.ee.uct.ac.za
Email address: eleceng@uct.ac.za
Telephone no.: 021 650 2811

Staff

Professor and Head of Department:
ES Boje, PrEng BSc(Eng) Wits MSc(Eng) PhD Natal FSAAE SMSAIMC MIEEE

Professors:
A Baghai-Wadji, MSc(Eng) PhD DSc Vienna FEMA SMIEEE
KA Folly, MSc(Eng) Beijing PhD Hiroshima MIEEE SMIEEE
P Martinez, BScHons(Mat Eng) MSc PhD Cape Town IAA, IISL, FRAS, MSAIP

Emeritus Professors:
M Braae, MSc(Eng) Cape Town PhD UMIST MIEEE
BJ Downing, MSc Bradford PhD Sheffield
G de Jager, MSc Rhodes PhD Manchester MBL SA MIEEE
CT Gaunt, BSc(Eng) Natal MBL SA PhD Cape Town FIET FSAIE
MR Inggs, BSc(Hons) Rhodes PhD London SMIEEE
A Petroianu, Dipl Ing USSR Dr Ing Bucharest FIEE VDE CIGRÉ
P Pillay, CEng BScEng UDW MSc(Eng) Natal PhD Virginia Tech FIET FIEEE
KM Reineck, CEng Dip Eng Cologne DipEIEng Dunelm PhD Newcastle VDE FIET

Honorary Professor:
R Prasad, BScEEng Sindri MScEEng PhD Mesra PPh

Adjunct Professor:
PJ Cilliers, PrEng BEng (Hons) Pret MS George Washington PhD Ohio SAIP

Associate Professors:
P Barendse, MSc(Eng) PhD Cape Town MIEEE
S Chowdhury, BEE(Hons) PhD (Eng) Kolkata MIET SMIEEE MIE SMIEEE
ME Dlodlo, Reg Eng, BSEE BS Geneva MSc Kansas State PhD Delft FZweIE MIEEE
OE Falowo, BEng MEng Akure PhD Cape Town SMIEEE
RH Geschke, BEng MSc(Eng) PhD Stellenbosch SMIEEE
MA Khan, MSc(Eng) PhD Cape Town SMIEEE
A Mishra, BE (REC India) PhD Edinburgh SMIEEE
F Nicolls, MSc(Eng) PhD Cape Town
D O’Hagan, BEng (Hons) MSc Ulster PhD UCL
AJ Wilkinson, BSc(Eng) Cape Town PhD London

Emeritus Associate Professors:
JR Greene, MSc(Eng) Cape Town MIEEE
M Malengret, MSc(Eng), PhD Cape Town

Honorary Associate Professor:
R Laufer, Dipl.-Ing TU Berlin, Dr.-Ing. Univ. Stuttgart IAA

Senior Lecturers:
MY Abdul Gaffar, MSc(Eng) PhD Cape Town
SI Ginsberg, MSc(Eng) Cape Town
M Hanif, BEng(Hons) UK PhD Ireland MIEEE, MIET
A Murgu, MSc(Eng) Bucharest Ph Lic (Comp Sci) PhD Jyväskylä MIEEE
A Patel, MSc(Eng) PhD Cape Town MIEEE
R Smit, MSc(ScEd) Witwatersrand, (Academic Development)

Honorary Adjunct Senior Lecturer
Froehlich A, LL.M.MAS Maître en Droit France, Dr jur Vienna, IISL

Adjunct Senior Lecturer:
I Khan, MSc(Eng) Cape Town MIEEE

Lecturers:
K Awodele, Reg Eng, BSc(Eng) Ife MSc(Eng) Abu PGDM MNSE MIEEE
J Mwangama, MSc(Eng) Cape Town, MIEEE
D Oyedokun, MSc(Eng) PhD Cape Town MIEEE SAIEE
MS Tsoeu, MSc(Eng) Cape Town MIEEE
RA Verrinder, MSc(Eng) Cape Town MIEEE
S Winberg, BSc(Hons) Cape Town MSc UTK PhD Cape Town

Senior Scholar:
MJE Ventura, PrEng BSc(Maths, Physics) BSc(Eng) Cape Town BSc(Hons) Pret MIEEE MSAIEE

Senior Research Officer:
R Herman, BSc(Eng) Cape Town MSc(Eng) PhD(Eng) Stell

Principal Technical Officer:
AC Wozniak, BSc(Eng) Cape Town

Chief Technical Officers:
J Pead, BSc(Eng), MSc(Eng) Cape Town
D De Maar, BEd(Hons) Cape Town

Senior Technical Officers:
P Bizimana
P Titus
Technical Officer:
B Daniels

Departmental Manager:
J Buxey

Administrative Officer (Undergraduate):
M van der Westhuizen BA PGDip LIS Cape Town

Finance Officer:
C Koonin

Administrative Assistant (Postgraduate):
N Moodley

Administrator (General):
R Harris

Receptionist:
L Johannes

The activities of the Department cover a wide field both at undergraduate and postgraduate level. The Department regards laboratory work as of significant importance and a range of dedicated laboratories exist. These are in the fields of Control and Process Control, Data Communications, Digital Systems and Computers, Electrical Machines and Transformers, Electronics and Telecommunications, Image Processing, Instrumentation, Microwave, Nuclear Power, Radar, Robotics, Power Electronics and Power Systems.

Postgraduate Programmes

Honours Programmes

Bachelor of Science (Honours) specialising in Nuclear Power [EH007EEE08]

Emeritus Professor and Programme Convener:
C.T. Gaunt, PrEng BSc(Eng) Natal MBL SA PhD Cape Town FIET FSAIEE

Nuclear power stations operating in over 30 countries provide approximately 13% of the world’s electricity. Nuclear energy is a part of the existing and planned energy and electricity policy of South Africa.

This Bachelor of Science (Honours) programme provides an interdisciplinary postgraduate qualification in the key aspects of nuclear power for societal benefit. The programme provides a balance of the scientific, engineering and applications aspects of nuclear power, including the policy, operating, safety and regulatory aspects.

The degree comprises coursework to the minimum of 108 credits and a 40-credit final year project.

The programme is designed to accommodate students who cannot be resident in Cape Town for the full duration of the degree. The courses will be offered in intensive one-week blocks, with pre-contact reading and post-contact assignments and various distance learning activities. Students will be required to be in Cape Town for the intensive course periods.
Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE4106Z</td>
<td>Introductory nuclear physics and radiation for power supply</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>EEE4107Z</td>
<td>Thermodynamics for nuclear power stations</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>EEE4108Z</td>
<td>Electrical and mechanical equipment in nuclear power stations</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>EEE4109Z</td>
<td>Theory and design of nuclear reactors</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>EEE4110Z</td>
<td>Operation and safety of nuclear reactors</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>EEE4111Z</td>
<td>Regulatory standards for nuclear power</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>MEC4111Z</td>
<td>Nuclear manufacturing & construction engineering management</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>EEE4112Z</td>
<td>Honours Nuclear Project</td>
<td>40</td>
<td>8</td>
</tr>
</tbody>
</table>

Total credits per year: 148

Please note that courses will only be offered if there are sufficient students registered for the course.

Master's Programmes

Master of Engineering specialising in Nuclear Power

[EM017EEE08]

Emeritus Professor and Programme Convener:

CT Gaunt, PrEng BSc(Eng) Natal MBL SA PhD Cape Town FIET FSAIEE

Nuclear power stations operating in over 30 countries provide approximately 13% of the world’s electricity. Nuclear energy is a part of the existing and planned energy and electricity policy of South Africa.

This Master of Engineering (MEng) programme provides a postgraduate qualification in the key aspects of nuclear power for societal benefit. The programme provides a balance of the scientific, engineering and applications aspects of nuclear power, including the policy, operating, safety and regulatory aspects.

The degree comprises coursework to the minimum of 120 credits and a 60-credit dissertation.

The programme is designed to accommodate students who cannot be resident in Cape Town for the full duration of the degree. The courses will be offered in intensive one-week or two-week blocks, with pre-contact reading and post-contact assignments and various distance learning activities. Students will be required to be in Cape Town for the intensive course periods.

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE5004Z</td>
<td>Minor Dissertation</td>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td>EEE4106Z</td>
<td>Introductory nuclear physics and radiation for power supply</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>EEE4107Z</td>
<td>Thermodynamics for nuclear power stations</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>EEE4108Z</td>
<td>Electrical and mechanical equipment in nuclear power stations</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>EEE5128Z</td>
<td>Nuclear reactor theory and design</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>EEE5129Z</td>
<td>Nuclear reactor operations and safety</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>EEE5130Z</td>
<td>Regulatory requirements for nuclear power</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>MEC4111Z</td>
<td>Nuclear manufacturing & construction engineering management</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

Total credits: 180

Please note that courses will only be offered if there are a sufficient number of students registered for the course.
Master of Philosophy specialising in Nuclear Power
[EM027EEE08]

Emeritus Professor and Convener:
CT Gaunt, PrEng BSc(Eng) Natal MBL SA PhD Cape Town FIET FSAIEE

Nuclear power stations operating in over 30 countries provide approximately 13% of the world’s electricity. Nuclear energy is a part of the existing and planned energy and electricity policy of South Africa.

This Master of Philosophy (MPhil) programme provides an interdisciplinary postgraduate qualification in the key aspects of nuclear power for societal benefit. The programme provides a balance of the scientific, engineering and applications aspects of nuclear power, including the policy, operating, safety and regulatory aspects.

The degree comprises coursework to the minimum of 120 credits and a 60-credit dissertation. Candidates deemed to have completed equivalent coursework, or deemed to have equivalent work experience in nuclear science, power or regulation may exceptionally be permitted to register for this degree by only 60 credits of coursework, in which case the dissertation must be to the value of 120 credits.

The programme is designed to accommodate students who cannot be resident in Cape Town for the full duration of the degree. The courses will be offered in intensive one-week or two-week blocks, with pre-contact reading and post-contact assignments and various distance learning activities. Students will be required to be in Cape Town for the intensive course periods.

Number Course NQF Credits HEQSF Level
END5037Z Minor Dissertation ... 60 09
EEE4106Z Introductory nuclear physics and radiation for power supply 16 8
EEE4107Z Thermodynamics for nuclear power stations 16 8
EEE4108Z Electrical and mechanical equipment in nuclear power stations ... 16 8
EEE5128Z Nuclear reactor theory and design ... 20 9
EEE5129Z Nuclear reactor operations and safety 20 9
EEE5130Z Regulatory requirements for nuclear power 20 9
MEC4111Z Nuclear manufacturing & construction engineering management 12 8
Total credits .. 180

Please note that courses will only be offered if there are a sufficient number of students registered for the course.

Master of Engineering specialising in Radar
[EM017EEE06]

Associate Professor and Programme Convener::
D O’Hagan, BEng(Hons) MSc Ulster PhD UCL MIEEE MIET

A candidate for the MEng in Radar is required to complete core courses totalling 120 credits and a 60 credit minor dissertation.

Each course will typically contain a lecture component of five full days, followed by weekly seminars, tasks and a written examination, over a five week period after the first, intensive lecture session. The programme is designed to support students that cannot be resident in Cape Town for the full duration to complete all courses, by using distance learning techniques during the follow up period after each course (after the one week intensive lecture period). All students will, however, have to be present in Cape Town for the one week lecture period for each course. Elements of continuous assessment (problem sets, short projects) and a written examination are utilised to assess the course.
Core Course
<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE5004Z</td>
<td>Minor Dissertation</td>
<td>60</td>
<td>9</td>
</tr>
</tbody>
</table>

Select courses to the value of 120 credits
<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE5105Z</td>
<td>Fundamentals of Radar Signal and Data Processing</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>EEE5108Z</td>
<td>Advanced Engineering Mathematics</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>EEE5109Z</td>
<td>Multitarget Multisensor Tracking and Data Fusion</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>EEE5110Z</td>
<td>Clutter and Detection in Clutter</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>EEE5111Z</td>
<td>High Resolution & Imaging Radar</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>EEE5112Z</td>
<td>Radar System Modelling</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>EEE5114Z</td>
<td>Special Topics in Radar A</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>EEE5115Z</td>
<td>Special Topics in Radar B</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>EEE5116Z</td>
<td>Special Topics in Radar C</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>EEE5117Z</td>
<td>Special Topics in Radar D</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>EEE5118Z</td>
<td>Special Topics in Radar E</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>EEE5119Z</td>
<td>Introduction to Radar Systems</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>EEE5120Z</td>
<td>Introduction to Electronic Defence</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>EEE5121Z</td>
<td>Microwave Components & Antennas</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>EEE5131Z</td>
<td>Microwave Filters</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>EEE5132Z</td>
<td>Special Topics in Radar F</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>

Please note that certain courses run every alternate year and courses will only run if there are sufficient students registered for the course

Master of Engineering specialising in Telecommunications [EM017EEE09]

Associate Professor and Programme Convener:
OE Falowo BEng MEng, Akure, PhD Cape Town SMIEEE

A candidate for the MEng in specializing Telecommunications is required to complete core courses of 120 credits and a 60 credit minor dissertation.

This programme aims to provide knowledge, skills and aptitudes for practising engineers to adapt to the rapidly changing technological landscape, turning products of research into practical solutions of developing world problems within international standards. The programme offers a selection of courses that span broad fundamental concepts that find applications in a wide range of disciplines. The approach enables students to be agile in response to new knowledge and novel developments. Core courses include Information Theory, Statistical Signal Theory and Advanced Engineering Mathematics.

Core Courses
<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE5004Z</td>
<td>Minor Dissertation</td>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td>EEE5108Z</td>
<td>Advanced Engineering Mathematics</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>EEE5135Z</td>
<td>Information Theory and Error-Control Coding</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>EEE5136Z</td>
<td>Statistical Signal Theory</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>

Select courses to the value of 60 credits
<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE5032Z</td>
<td>Digital Communication Systems</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>
Master of Philosophy specialising in Space Studies
[EM026EEE07]

Programme Convener:
P Martinez, BSc, BScHons(Mat Eng), MSc, PhD, Cape Town IAA, IISL, FRAS, MSAIP

Space technology and space applications are used to such an extent that they are now part of the critical infrastructure of the modern information society. Space applications are also a key contributor to sustainable development in areas such as food and water security, weather prediction, climate change monitoring, environmental resource management, disaster management, search-and-rescue, financial transactions, telemedicine and tele-education. This Master of Philosophy (MPhil) programme is aimed at providing an interdisciplinary postgraduate qualification in the key aspects of space science and technology and space applications for societal benefit. The programme provides a balance of the scientific, engineering and applications aspects of space technology, as well as the policy, financial, commercial and regulatory aspects. The degree comprises coursework to the minimum of 60 credits and a 120-credit dissertation. The coursework comprises 45 credits of compulsory core courses in: Space mission analysis and design; Space applications for sustainable development; and Space and society. The candidate is required to complete a further minimum of 15 credits of approved elective courses to make up a minimum of 60 credits of coursework. Candidates deemed to have completed equivalent coursework, or deemed to have equivalent work experience in the space arena, may exceptionally be permitted to register for this degree by dissertation only, in which case the dissertation must be to the value of 180 credits [EM025EEE07].

The programme is designed to accommodate students who cannot be resident in Cape Town for the full duration of the degree. The courses will be offered in intensive course periods with pre-contact reading and post-contact assignments and various distance learning activities. Students will be required to be in Cape Town for the intensive course periods.

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE5002W</td>
<td>Dissertation: Electrical Engineering</td>
<td>120</td>
<td>09</td>
</tr>
<tr>
<td>EEE5103Z</td>
<td>Dissertation Preparation</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>EEE5124Z</td>
<td>Space and Society</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>EEE5125Z</td>
<td>Space Applications for Sustainable Development</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>EEE5126Z</td>
<td>Space Mission Analysis and Design</td>
<td>15</td>
<td>9</td>
</tr>
</tbody>
</table>

Please note that certain courses run every alternate year and that certain courses will only be offered if there are sufficient students registered for the course.
Elective Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE5127Z</td>
<td>Special Topics in Space Technology A</td>
<td>5</td>
<td>09</td>
</tr>
<tr>
<td>EEE5133Z</td>
<td>Special Topics in Space Technology B</td>
<td>5</td>
<td>09</td>
</tr>
<tr>
<td>EEE5134Z</td>
<td>Special Topics in Space Technology C</td>
<td>5</td>
<td>09</td>
</tr>
<tr>
<td>EEE5141Z</td>
<td>Special Topics in Space Technology D</td>
<td>5</td>
<td>09</td>
</tr>
<tr>
<td>EEE5142Z</td>
<td>Special Topics in Space Technology E</td>
<td>5</td>
<td>09</td>
</tr>
</tbody>
</table>

Master of Science in Engineering specialising in Electrical Engineering

The Department prepares candidates for the Master of Science in Engineering in Electrical Engineering and for the Doctor of Philosophy. The Department offers a number of special postgraduate courses each year some of which are scheduled to facilitate attendance by practising engineers from industry. The majority of courses are full-time and cover a variety of topics.

The Master of Science in Engineering can be either by dissertation only [EM023] or by coursework (approved by your supervisor) and dissertation [EM024].

Research Master’s by dissertation

[EM023EEE01]

EM023 Research Master’s by dissertation

Core Course

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE5000W</td>
<td>Dissertation Electrical Engineering</td>
<td>180</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total credits</td>
<td></td>
<td>180</td>
</tr>
</tbody>
</table>

Research Master’s by coursework and dissertation

[EM024EEE01]

EM024 Research Master’s by coursework and dissertation

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE5002W</td>
<td>Dissertation Electrical Engineering</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Elective courses approved by supervisor</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>EEE5103Z</td>
<td>Dissertation Preparation</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total credits</td>
<td></td>
<td>180</td>
</tr>
</tbody>
</table>

Doctoral Programmes

Doctor of Philosophy

[ED001EEE01]

ED001 Doctor of Philosophy is a Research Degree

Core Course

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE6000W</td>
<td>Thesis</td>
<td>360</td>
<td>10</td>
</tr>
</tbody>
</table>

It is advisable before making an online application for Masters or PhD, that you make contact via email with one of the Academic staff members listed below to discuss your research interest.

Research Areas
Bio-Inspired Robotics
Commensal Radar Research
Control Systems and Mechatronics
Electronic & Accelerated Computational Engineering
Electronics
Electronics
Future Internet Technologies
Image Processing & Vision Systems
Control & Instrumentation Engineering
Machines & Power Electronics
Microwave and Millimeter Wave Engineering
Mobile Robotics
Power & Energy Systems Protection
Power Electronics
Power Electronics, Drives & Machines
Power System Network Studies
Power Network Optimization, Control and Stability
Radar Signal Processing and Digital Signal Processing
Space Technology
Signal Processing
Software Defined Radio
Telecommunications Network Management
Telecommunications Networks
Telecommunications Systems
Renewable Energy, Geomagnetically-induced
Currents, Transformers and Power System Stability

A.Patel@uct.ac.za
Daniel.OHagan@uct.ac.za
Edward.Boje@uct.ac.za
Alireza.Baghai-Wadji@uct.ac.za
Andrew.Wilkinson@uct.ac.za
Samuel.Ginsberg@uct.ac.za
Joyce.Mwangama@uct.ac.za
Fred.Nicolls@uct.ac.za
Mohohlo.Tsoeu@uct.ac.za
Azeem.Khan@uct.ac.za
Riana.Geschke@uct.ac.za
Robyn.Verrinder@uct.ac.za
Sunetra.Chowdhury@uct.ac.za
moin.hanif@uct.ac.za
Paul.Barendse@uct.ac.za
Kehinde.Awodele@uct.ac.za
Yunus.abdulgaffar@uct.ac.za
Peter.Martinez@uct.ac.za
Amit.Mishra@uct.ac.za
Simon.Winberg@uct.ac.za
Alexandru.Murgu@uct.ac.za
Olabisi.Falowo@uct.ac.za
Mqhele.Dlodlo@uct.ac.za
David.Oyedokun@uct.ac.za

Course descriptions are set out in the section on Courses Offered. The course code abbreviation for Electrical Engineering is EEE.

Course Outlines

EEE4106Z INTRODUCTORY NUCLEAR PHYSICS AND RADIATION FOR POWER SUPPLY
16 NQF credits at HEQSF level 8
Convener: Emeritus Professor D Aschman
Course outline:
This advanced course aims to develop strong concepts of nuclear physics and radiation in the context of nuclear power reactors. Topics include: nuclear physics and radiation in the context of nuclear power reactors; atomic nature of matter; binding energy; radioactive decay; nuclear fission; neutron efficiency; ionising radiation; radiation detection and measurement; and effects of radiation on matter and biological systems.

DP requirements: None
Assessment: Coursework 30%, examination 70%.

EEE4107Z THERMODYNAMICS FOR NUCLEAR POWER STATIONS
16 NQF credits at HEQSF level 8
Convener: Mrs R Smit
Course outline:
This advanced course aims to develop strong concepts of thermodynamics as approached by different disciplines and applied in the context of nuclear power. Topics include: concepts and application of thermodynamics for power stations; basic energy concepts, units and properties; thermodynamic cycles; fluid dynamics; thermo-hydraulics and core thermal units
DP requirements: None
Assessment: Coursework 30%, examination 70%.

EEE4108Z ELECTRICAL & MECHANICAL EQUIPMENT IN NUCLEAR POWER STATIONS
16 NQF credits at HEQSF level 8
Convener: Associate Professor MA Khan
Course outline:
This course aims to develop an advanced understanding of the role of electrical and mechanical equipment in nuclear power stations, including a working knowledge of the different types, applications and operating mechanisms where applicable. Topics include: electrical and mechanical equipment used in nuclear power stations: pumps and valves; heat exchangers; compressors; transformers, motors, generators; sensors, detectors and protection systems; battery chargers, inverters and back-up supplies.
DP requirements: None
Assessment: Coursework 30%, examination 70%.

EEE4109Z THEORY AND DESIGN OF NUCLEAR REACTORS
16 NQF credits at HEQSF level 8
Convener: Emeritus Professor CT Gaunt
Course outline:
This course aims to develop strong concepts of engineering theory and design as applied in the context of nuclear power reactors. Topics include: nuclear reactor engineering theory and design, with an emphasis on pressurised water reactors: types and generations of power reactors; neutron life cycle; reactor operation theory; reactor core design; thermal-hydraulic analysis; core power density and effect on reactor size, control and shielding; corrosion and materials properties.
DP requirements: None
Assessment: Coursework 30%, examination 70%.

EEE4110Z OPERATION AND SAFETY OF NUCLEAR REACTORS
16 NQF credits at HEQSF level 8
Convener: Emeritus Professor CT Gaunt
Course outline:
This advanced course aims to develop strong concepts in the operation and safety of complex systems and the application in the context of nuclear power stations. Topics include: functional description and design of main components of primary, secondary, auxiliary and safety systems: physical phenomena determining order of magnitude of key parameters of reactor operation; system modelling, normal operating transients, accident scenarios and extreme event identification; shutdown and restart; reactor coolant system; reactor protection; electricity supplies needed for production and safety; and simulators.
DP requirements: None
Assessment: Coursework 30%, examination 70%.

EEE4111Z REGULATORY STANDARDS FOR NUCLEAR POWER
16 NQF credits at HEQSF level 8
Convener: Emeritus Professor CT Gaunt
Course outline:
This course aims to understand the principles of regulatory processes, including safety, environmental and operating regulations, and their application in the context of nuclear power. Topics will include the safety requirements and licencing processes for nuclear plants: nuclear regulation; design philosophy; radiation protection management; emergency preparedness; verification and assurance; learning from incidents; international peer review. Energy regulation:
energy regulator, integrated energy planning. Environmental regulation: environmental impact analysis; environmental management plans; and monitoring.

DP requirements: None

Assessment: Coursework 30%, examination 70%.

EEE4112Z HONOURS NUCLEAR PROJECT

40 NQF credits at HEQSF level 8
Convener: Emeritus Professor CT Gaunt
Course outline:
An engineering project involves the creative application of scientific principles to the solution of a technical problem. It involves a problem description or research hypothesis developed in consultation with a supervisor, reviewing the topic in detail and defining the boundaries (scope) carefully, confirming an understanding of the requirements of the supervisor, searching for, selecting and justifying the most appropriate approaches to solving the problem or testing the hypothesis. It also requires a student to be able to analyse, design, build, integrate and test as is appropriate for the specific project. This could include the use of hardware, software and simulation. A student is required also to evaluate the project against the success criteria and design objectives, and to write a report about the project, the findings, and any recommendations. In addition a student must make an oral presentation and prepare a poster.

DP requirements: None

Assessment: Report 95%, Poster 5%

EEE5000W MASTERS DISSERTATION IN ELECTRICAL ENGINEERING

180 NQF credits at HEQSF level 9
Course outline:
The dissertation should incorporate any or all of the following: design of all or part of an engineering project to a specification involving advanced concepts and theoretical principles; a research project of a theoretical or practical nature; a critical review of a specified topic based upon a comprehensive search of the literature or available data; development of an item of equipment or a technique involving novel features or advanced design; or any other study acceptable to the Faculty.

DP requirements: None

Assessment: Written work counts 100%.

EEE5002Z MSC ELECTRICAL ENG PART DISS

120 NQF credits at HEQSF level 9
DP requirements: None

EEE5004Z MINOR DISSERTATION

60 NQF credits at HEQSF level 9
Course outline:
Candidates for the degree of M.Eng will be required to complete a project to be selected in consultation with the programme convener. A written project report is required and is the sole assessment of the course.

DP requirements: None

Assessment: Written work counts 100%.

EEE5018Z MULTIVARIABLE CONTROL SYSTEM DESIGN

16 NQF credits at HEQSF level 9
Convener: Professor E Boje
Course entry requirements: EEE3069W or equivalent.

Course outline:
This course in multivariable control system design will cover selected topics in: Structure of large-scale systems, system decomposition. Frequency domain design methods: inverse nyquist arrays,

DP requirements: Satisfactory completion of coursework.

Assessment: Examination 3 hours.

EEE5022Z IMAGING RADAR APPLICATIONS

Offered on Demand

20 NQF credits at HEQSF level 9

Convener: Associate Professor D O’Hagan

Course entry requirements: BSc(Eng) in Electrical Engineering or BSc(Hons) in Physics

Course outline:

This advanced course covers the underlying principles of all common imaging radar applications. Topics include: fundamentals of electromagnetic surface scattering; basics of synthetic aperture radar; interferometry; subsidence monitoring; polarimetry; scatterometers; altimeters; lidar and ground penetrating radar applications.

Assessment: Examination 3 hours.

EEE5026Z CONVERGENT TELECOMMUNICATION & DATA NETWORKS

15 NQF credits at HEQSF level 9; tutorials, practicals, and project as required.

Convener: Dr A Murgu

Course entry requirements: EEE4087F or equivalent.

Course outline:

This course aims to develop an advanced understanding of service management approaches in communication and data networks. Topics include: Fixed-mobile convergence and next-generation networks delivering applications and integrated multimedia services. This course provides the students with the understanding of the service management principles enabling the next generation networks to deliver IP-based services to user terminals in converged fixed and wireless platforms and multioperator environments. The course will cover selected topics related to: service management, markets and services; service convergence. Network Interoperability: PSTN, hierarchical networks, LAN/SOHO service networks, access networks, WAN, internet and core networks. Data Plane Technologies: Multiplexing, L2/L3/L4 switching, routing, multicasting. Control Plane Technologies: signaling principles, call set-up, connection control, SS7, H.323, SIP, MPLS, SNMP. Network Virtualization: principles and signaling; network virtualization elements and deployment, VPN, VPLS. Services Management: service requirements, qualifiers and management; SDP, APIs, Parlay, JAIN. NGN Service Platforms: multiservice platforms, softswitches, cluster servers, Asterisk. Service Clouds: principles, SOA, cloud computing; resource sharing, pooling and splitting; service models, monitoring and governance; content distribution networks. Applications: packetized voice telephony, video streaming, multimedia data networks, VoIP, and IPTV.

DP requirements: 80% attendance and full completion of coursework.

Assessment: Examination 50%, year mark 50%

EEE5027Z NETWORK & INTERNET SECURITY

15 NQF credits at HEQSF level 9; tutorials, practicals, and project as required.

Convener: Dr A Murgu

Course entry requirements: EEE3084W or equivalent.

Course outline:

This course aims to develop an advanced understanding of computer network security; forms of protection: access control, authentication, confidentiality, integrity, non-repudiation; security threats to computer networks; cyber crimes and hackers; hacker motives, hacking topologies, hackers tools of system exploitation; hostile scripts; common gateway interface (CGI), CGI scripts in a tree-way handshake, server CGI interface, CGI script security issues, web script security issues; security
assessments, analysis, and assurance; disaster management; disaster prevention, disaster response, disaster recovery, planning for a disaster recovery; firewalls; system intrusion detection and prevention; computer and network forensics; virus and content filtering; computer network security protocols; mobile communication systems and security issues; virtualisation infrastructure and security issues; and cloud computing and security issues.

DP requirements: 80% attendance and satisfactory completion of coursework.

Assessment: Examination 50%, year mark 50%.

EEE5029Z BROADBAND NETWORKS

To be Removed

15 NQF credits at HEQSF level 9; tutorials, practicals, and a project as required.

Convener: Mr N Ventura

Course entry requirements: EEE3084W or EEE3083F and EEE3085S or equivalent.

Course outline:
The course aims to develop an understanding of the fundamental techniques, algorithms and protocols underlying the recent advances in the field of broadband networking. It provides an introduction to broadband networking, covering principles and fundamentals of the high performance technologies that enable the delivery of voice, video and data services, and providing a foundation for understanding the broadband communications infrastructure and the framework needed for broadband network solutions. These aspects include traffic control, policing and shaping, QoS provisioning, routing, flow control, scheduling and signalling. Beside learning the architectural frameworks, students will be exposed to various analytical methods and simulation tools used in the design and engineering of next-generation networks. Design and analysis of computer networks, modelling and performance evaluation, and queuing theory applied to computer networks. Traffic flow management and error control. Routing algorithms and protocols. Switch and router architectures. Extensions of internet technologies in various application domains, i.e., the future internet, internet of things, and machine type communications.

DP requirements: 80% attendance and satisfactory completion of coursework.

Assessment: Examination 50%, year mark 50%.

EEE5032Z DIGITAL COMMUNICATIONS

Offered on Demand

20 NQF credits at HEQSF level 9; tutorials and 8 practical exercises as required and a project.

Convener: Associate Professor M Dlodlo

Course entry requirements: EEE3084W, EEE3086F or equivalent and Postgraduates standing in Telecommunications or Radar

Course outline:
This advanced course in digital communications includes: Digital Communication Systems Theory: probability, random variables and random signal principles, modelling of digital communication signals and systems; modelling of information sources; optimum receivers, channel and system performance in the presence of Gaussian noise, synchronisation; channel models, channel capacity, and equalisation, resource allocation, multichannel and multicarrier systems, spread-spectrum signalling, optical communication signalling principles, and software-defined radios. Practical Applications: selected topics from baseband and bandpass signalling; technical standards for wireless / optical / satellite-based communication systems; multiplexing and multiple access standards; next generation communication systems.

DP requirements: 80% attendance and satisfactory completion of coursework.

Assessment: June Examination 50%, year mark 50%.
EEE5103Z DISsertation preparation
0 NQF credits at HEQSF level 9

Course outline:
The aim of this course is to allow a student to undertake preparatory work for the master’s dissertation. Work required includes literature searches and reviews; identification of the research problem, objectives and hypothesis; consideration of research methodology; planning for the active research phase; and ensuring that research infrastructure (e.g. apparatus etc.) is or will be in place. The student should maintain regular contact with his/her supervisor in order to show evidence of suitable progress towards these aims. The supervisor must indicate satisfactory fulfilment of the course aims prior to the student proceeding to the dissertation.

DP requirements:
None

EEE5105Z Fundamentals radar signal & DP
20 NQF credits at HEQSF level 9

Convener: Associate Professor A Mishra

Course entry requirements: BSc in Electrical Engineering, Honours in Science, including final year students

Course outline:
This course in the fundamentals of radar signal and data processing includes selected topics in: signal processing in radar systems (history of radar; basic radar functions; elements of pulsed radar; signal processing concepts in radar e.g. spatial resolution, sampling theory, correlation, interference suppression, phenomenology, imaging, detection). Signal models and processing in radar (radar cross section; radar equation; swerling models; clutter modelling; noise modelling and signal-to-noise ratio; jamming; doppler shift; cross-range; multipath; sampling in doppler and angle domains; quantization; I/Q modulation; radar; matched filtering; compression filtering; ambiguity function; pulse burst waveforms; frequency-modulated waveforms; phase modulated waveforms; doppler spectrum; moving target indication; pulse doppler processing; pulse pair processing) data processing; topics in radar (radar detection and hypothesis testing; threshold detection; binary integration; constant false alarm rate; cell-averaging CFAR; order statistic CFAR; spatial filtering; beam forming; space-time adaptive processing; and cognitive radar).

DP requirements:
80% attendance of lectures and completion of tutorials/projects.

Assessment:
Project 25%, tutorials 20% and examination 55%

EEE5108Z advanced engineering mathematics
20 NQF credits at HEQSF level 9

Convener: Associate Professor D O’Hagan

Course entry requirements: All undergraduate calculus, algebra and numerical methods required by a typical BSc Engineering (Electronics) degree.

Course outline:
This course aims to develop an advanced understanding of radar, electronic protection and telecommunications mathematics. Selected topics include: statistics and random processes: probability and induction; causality versus randomness; distribution and density functions; mean and variance; moments; characteristic functions; probability space; conditional distributions and probability; Bernoulli’s theorem and games of chance; bivariate distributions; joint moments; joint characteristic functions; conditional expected values; ergodicity detection and estimation: systems with stochastic inputs; the power spectrum; parameter estimation; hypothesis testing; mean square estimation; Cramer-Rao bounds; stochastic convergence and limit theorems; finite-order systems and state variables; spectral representation of random processes; spectrum estimation; bandlimited processes and sampling theory; deterministic signals in noise; bispectra and system identification; filtering and prediction; Kalman filters. linear algebra: system of linear equations; Cramer's rule; Gaussian elimination; Gauss-Jordan elimination; vectors and vector spaces; least squares; Gram-Schmidt process; vector differential calculus; vector integral calculus. Matrix algebra: matrix addition, multiplication, dot product, transpose; eigenvalue, eigenvector and eigenspace; Jordan
normal form; matrix rank, determinants and inversion; matrix congruence and congruence relation; conjugate transpose and hermitian matrices; matrix orthogonality; matrix decomposition methods; specific types of matrices e.g. Toeplitz matrices. Numerical methods: numerical linear algebra, e.g. solving systems of linear equations and eigenvalue algorithms; Interpolation, e.g. polynomial interpolation, spline interpolation and trigonometric interpolation; finding roots of nonlinear equations; optimization, e.g. linear programming and nonlinear programming; numerical quadrature (i.e. integration); numerical differential equation solutions; and the Monte Carlo analysis.

DP requirements: 80% attendance of lectures and completion of tutorials/projects.

Assessment: Coursework 20%, examination 55% and project 25%.

EEE5109Z MULTI-TARGET MULTISENSOR TRACKING AND DATA FUSION

Offered on Demand

20 NQF credits at HEQSF level 9

Convener: Associate Professor D O’Hagan

Course entry requirements: BSc in Electrical Engineering, Honours in Science, including final year students.

Course outline:

Part 2: Kinematic Data Fusion (selected topics from) Data/Information Fusion Models — JDL Data Fusion Model. Unified Data Fusion Model. Visual Situation Assessment Model. Strategies and Algorithms for Target Tracking and Data Fusion; Multiple Radar Tracking (Architectures; Centralized or distributed? Tracks or measurements? Sensor registration and alignment; Track fusion) Performance Evaluation of Data Fusion Systems, Software, and Tracking; Evaluation of tracking system; Covariance analyses; Correlation probabilities; Markov chains Simulation and Monte Carlo techniques Applications of Multisensor Systems and Data Fusion; Sensor Management in Data Fusion Systems (Sensor management functions Establishing target priorities; Sensor tasking).

DP requirements: 80% attendance of lectures and completion of tutorials/projects.

Assessment: Projects 25%, tutorials 20% and examination 55%.

EEE5110Z CLUTTER & DETECTION IN CLUTTER

Offered on Demand

20 NQF credits at HEQSF level 9

Convener: Associate Professor D O’Hagan

Course outline:

Selected topics from:

Part 1: Ground and Sea Radar Clutter Modelling. Statistical modelling of radar clutter. General sea and ground clutter features; Modelling for radar cross section (RCS); Empirically observed models (Rayleigh, Weibull, K, generalized K, log-normal, etc.); Extension of the Central Limit Theorem (CLT): the compound-Gaussian model; Multidimensional models of random clutter vectors; Radar clutter power spectral density models (Gaussian, power-law, exp., AR, etc.); - Experimental Validation: Sea Clutter Data. Amplitude analysis of HH, VV, HV, and VH data; Validation of the compound-Gaussian model by means of speckle and texture analyses; Cumulant domain analysis; Coherent analysis: empirical correlation
DEPARTMENTS IN THE FACULTY AND COURSES OFFERED 183

and PSD; Incoherent analysis: empirical correlation; Non-stationarity and cyclostationarity of sea clutter data; Validation of the compound-Gaussian model by means of speckle and texture analyses; Cumulant domain analysis; Coherent analysis: empirical correlation and PSD; Incoherent analysis: empirical correlation; Non-stationarity and cyclostationarity of sea clutter data; Experimental Validation: Ground Clutter Data. Measurement instrumentation; Analysis of I and Q clutter components; Azimuth and range correlation/spectral analyses; Cumulant based Gaussianity test; Amplitude PDF analysis; Impact of clutter statistics and spectral models on radar performance prediction. Clutter simulation for radar performance evaluation.

Part 2: Coherent Radar Target Detection in Heavy-Tailed Clutter.
- Coherent Detection of Radar Targets in non-Gaussian Disturbance. Radar detection problem; Optimum coherent detection in Gaussian clutter; Optimum coherent detection in compound-Gaussian clutter (the likelihood ratio test; the estimator-correlator; the whitening matched filter and data-dependent threshold;) Suboptimum detection in Gaussian clutter and in compound-Gaussian clutter (based on the three interpretations of the optimum detector); Performance analysis - design trade-offs; Optimum and suboptimum detection in compound-Gaussian clutter when the target signal is r-D unknown (modelled as a rank-deficient Gaussian random vector);
- Adaptive Implementation of Detectors in non-Gaussian Disturbance. Gaussian clutter when the clutter covariance matrix is unknown; Compound-Gaussian clutter when the clutter covariance matrix is unknown; compound-Gaussian clutter when the target signal is 1-D unknown (unknown steering vector); Adaptive implementation in compound-Gaussian clutter when the target signal is r-D unknown (modelled as a rank-deficient Gaussian random vector); Advanced radar detection under mismatched signal models (Mismatched signals; Robust receivers; Selective receivers; Tunable receivers).

DP requirements: 80% attendance of lectures and completion of tutorials/projects.
Assessment: Project 25%, tutorials 20% and examination 55%.

EEE5111Z HIGH RESOLUTION AND IMAGING RADAR

Offered on Demand

20 NQF credits at HEQSF level 9

Convenor: Associate Professor D O’Hagan

Course entry requirements: BSc in Electrical Engineering, Honours in Science, including final year students.

Course outline:

Part 1: High Resolution Radar (selection of) Application of the Radar Range Equation to High-Resolution Radar, High-Resolution Radar Design; High-Range-Resolution Waveforms and Processing; Synthetic High-Resolution Radar.

Part 2: Synthetic Aperture Radar (selection of) Synthetic Aperture Concepts; SAR Signal Properties; SAR Processing Algorithms (Range Doppler Algorithm; Chirp Scaling Algorithm; Omega-K Algorithm; SPECAN Algorithm) Comparison of Algorithms; Doppler Centroid Estimation; Automatic Focusing; Advanced concepts (Polarimetric SAR; Interferometric SAR; GMTI); Applications of SAR (Military, Earth Observation, Digital Terrain Elevation Models).

Part 3: Inverse Synthetic Aperture Radar (selection of) Inverse Synthetic Aperture Radar Concepts; ISAR Geometry and Signal Modeling; ISAR image formation (RF Front-End and Signal demodulation; Radial motion compensation (Autofocusing); Image formation (Range-Doppler (RD), Joint Time-Frequency Analysis (JTFA), Back-projection); Interpretation of ISAR Images Image Autofocusing techniques (Parametric and non-parametric techniques; Hot Spot Processing (Prominent Point Processing); Phase Gradient Autofocus (PGA); Image Contrast Based Autofocus (ICBA); Image Entropy Based Autofocus (IEBA); Comparison of methods Time-window selection; Cross range scaling; ISAR imaging using CLEAN techniques; Polarimetric ISAR; Recent advances (Bistatic and multi-static ISAR, 3D ISAR).

DP requirements: 80% attendance of lectures and completion of tutorials/projects.
Assessment: Projects 25%, tutorials 20% and examinations 55%.
EEE5112Z RADAR SYSTEM MODELLING
Offered on Demand
20 NQF credits at HEQSF level 9
Convener: Associate Professor D O’Hagan
Course entry requirements: BSc in Electrical Engineering, Honours in Science, including final year students
Course outline: This course aims to develop an advanced understanding of radar system modelling. Topics include: modelling & simulation to assess radar systems; the complexities of radar cross section of a target; propagation and clutter and application of techniques to integrate propagation, radar cross section and clutter models into the radar model.
DP requirements: 80% attendance of lectures and completion of tutorials/projects.
Assessment: Projects 25%, tutorials 20% and examinations 55%.

EEE5114Z SPECIAL TOPICS IN RADAR A
Offered on Demand
5 NQF credits at HEQSF level 9
Convener: Associate Professor D O’Hagan
Course outline: This short course is a presentation and study of a specialist topic in the field of radar and electronic defence. A student will participate in 16 hours of lectures and a post cost seminar, which will discuss a problem, set by the course convener. Assessment is by means of a written examination.
DP requirements: None
Assessment: 3 hour Examination 100%.

EEE5115Z SPECIAL TOPICS IN RADAR B
Offered on Demand
5 NQF credits at HEQSF level 9
Convener: Associate Professor D O’Hagan
Course outline: This short course is a presentation and study of a specialist topic in the field of radar and electronic defence. A student will participate in 16 hours of lectures, and a post course seminar, which will discuss a problem, set by the course convener. Assessment is by means of a written examination.
DP requirements: None
Assessment: 2 hour examination 100%.

EEE5116Z SPECIAL TOPICS IN RADAR C
Offered on Demand
5 NQF credits at HEQSF level 9
Convener: Associate Professor D O’Hagan
Course outline: This short course is a presentation and study of a specialist topic in the field of radar and electronic defence. A student will participate in 16 hours of lectures, and a post course seminar, which will discuss a problem, set by the course convener. Assessment is by means of a written examination.
DP requirements: None
Assessment: 3 hour examination 100%.

EEE5117Z SPECIAL TOPICS IN RADAR D
Offered on Demand
10 NQF credits at HEQSF level 9
Convener: Associate Professor D O’Hagan
Course outline:
This short course is a presentation and study of a specialist topic in the field of radar and electronic defence. A student will participate in 16 hours of lectures, and a post course seminar, which will discuss a problem, set by the course convener. Assessment is by means of a written examination.

DP requirements: None

Assessment: 3 hour examination 100%

EEE5118Z SPECIAL TOPICS IN RADAR E

Offered on Demand

10 NQF credits at HEQSF level 9

Convener: Associate Professor D O'Hagan

Course outline:
This short course is a presentation and study of a specialist topic in the field of radar and electronic defence. A student will participate in 16 hours of lectures, and a post course seminar, which will discuss a problem, set by the course convener. Assessment is by means of a written examination.

DP requirements: None

Assessment: 3 hour examination 100%

EEE5119Z INTRODUCTION TO RADAR SYSTEMS

20 NQF credits at HEQSF level 9

Convener: Associate Professor D O’Hagan

Course entry requirements: BSc in Electrical Engineering, Honours in Science, including final year students

Course outline:
This advanced course in radar systems includes: Introduction to Signal Processing in Radar Systems (basic radar functions; elements of pulsed radar; signal processing concepts in radar e.g. spatial resolution, sampling theory, correlation, interference suppression, phenomenology, imaging, detection). Signal Models and Processing in Radar (radar cross section; radar equation; swerling models; clutter modelling; noise modelling and signal-to-noise ratio; jamming; doppler shift; cross-range; multipath; sampling in doppler and angle domains; quantization; I/Q modulation; radar; matched filtering; compression filtering; ambiguity function; pulse burst waveforms; frequency-modulated waveforms; phase modulated waveforms; Doppler spectrum; moving target indication; pulse doppler processing; pulse pair processing). Data Processing Topics in Radar (radar detection and hypothesis testing; threshold detection; binary integration; constant false alarm rate; CFAR forms, {Cell-averaging CFAR; Order statistic CFAR}; spatial filtering; temporal filtering, beam forming; space-time adaptive processing; concepts of cognitive radar). Introduction to Radar Target Recognition Information available in radar signals; extracting features from radar signals, signal processing for target recognition, pattern recognition techniques, secondary radar, over the horizon radar, and subsurface radar.

DP requirements: 80% attendance of lectures and completion of tutorials/projects.

Assessment: Coursework 40% and examination 60%

EEE5120Z INTRODUCTION TO ELECTRONIC DEFENCE

Offered on Demand

20 NQF credits at HEQSF level 9

Convener: Associate Professor D O’ Hagan

Course entry requirements: BSc in Electrical Engineering, Honours in Science, including final year students

Course outline:
This course is an advanced introduction to electronic defence. Selected topics include: Electronic Warfare: threats, requirements and principles (information warfare, intelligence, electronic attack against radar & communication systems). Advanced Radar Threat (low-intensity threat, air defence radar, phased array radars, airborne radar, EP techniques for surveillance and tracking radar).
Modern EA Systems: architecture, types, and technology (onboard/offboard architectures, operational EA systems architecture, EA radar jamming waveforms, transponder jamming, support jamming). EA Against Modern Radar Systems (pulse compression, pulsed doppler radar, monopulse, coherent sidelobe cancelers). Digital Radio Frequency Memory (DRFM architectures, DRFM fundamentals, DRFM sampling techniques, direct digital synthesizer, advanced DRFM architecture, voltage controlled oscillators). Electronic Warfare Support (signal and threat environment, parameters measured by the ES system, advanced ES systems, direction finding, probability of intercept). Expendables and Decoy Systems (design of expendable EA systems, chaff, infrared missile attack). Directed Energy Weapons and Stealth Technology (directed energy weapons, stealth). Applications of EW-Surveillance (search for, intercept, identify, and locate or localize sources of intentional and un-intentional radiated electromagnetic energy for immediate threat recognition, targeting, planning). Jamming (use of electromagnetic energy, directed energy, or anti-radiation weapons to attack personnel, facilities, or equipment with the intent of degrading, neutralizing, or destroying enemy combat capability). Protection (passive and active means to protect personnel, facilities, and equipment from any effects of friendly or enemy use of the electromagnetic spectrum that could degrade, neutralize, or destroy friendly combat capability).

DP requirements: 80% attendance of lectures and completion of tutorials/projects.

Assessment: Coursework 40% and examination 60%

EEE5121Z MICROWAVE COMPONENTS & ANTENNAS

Offered on Demand

20 NQF credits at HEQSF level 9; block release.

Convener: Emeritus Professor BJ Downing

Course outline: This advanced course will focus on microwave components and antennas used in radar systems. The design of components and antennas is a core part of the curriculum and includes an understanding of: filters and multiplexing: microwave filters, diplexers, duplexer, ferrites in circulators and isolators, isolator, gyrator, circulator, power tubes, klystron, travelling wave tube, backward wave oscillator antenna theory: antenna characteristics including gain, directivity, reciprocity far field, reflector antennas, antenna arrays, and radar antennas.

DP requirements: None

Assessment: Coursework 30% and examination 70%

EEE5122F COMPUTATIONAL ELECTRONICS I

20 NQF credits at HEQSF level 9; block release.

Convener: Professor A Baghai-Wadji

DP requirements: None

Assessment: Coursework 30% and examination 70%.

EEE5123S COMPUTATIONAL ELECTRONICS II

20 NQF credits at HEQSF level 9; block release.

Convener: Professor A Baghai-Wadji

Course outline: This course introduces students to modern computational techniques for modelling and simulation of nano-electronic, plasmonic, quantum electronic, and molecular-electronic devices and provides instruction in: path integral method, quantum statistical methods, wavelets and frames, modern

DP requirements: None

Assessment: Coursework 30% and examination 70%

EEE5124Z SPACE AND SOCIETY

15 NQF credits at HEQSF level 9; block release.

Convener: Professor P Martinez

Course outline:
This advanced course will focus on the societal dimensions of space science and technology. The course will cover the scientific, military, economic and political rationales for space activities. The various international and national regulatory frameworks for space activities will be covered as well as the rationales for and salient aspects of international space cooperation. Space activities are often thought of in terms of their scientific and technological attributes. Yet, the successful implementation of both public and private sector space programmes relies on a wide variety of non-space factors. This course will cover: the historical and current economic, political, military and regulatory drivers for space activities. The drivers for international cooperation in space activities and the changing geopolitics of space cooperation. An overview of regulation of space activities at national and international level and the financing of space projects. A further important aim will be to train students in the communication of space activities to the media and to non-specialist audiences.

DP requirements: None

Assessment: Coursework 45% and examination 55%

EEE5125Z SPACE APPLICATIONS FOR SUSTAINABLE DEVELOPMENT

15 NQF credits at HEQSF level 9; block release.

Convener: Professor P Martinez

Course outline:
Space systems play a critical role in the modern information society. The course will focus on the applications of space technology to address sustainable development challenges from a local and global perspective. The three main pillars of space applications are: Earth observation, communications and satellite-aided positioning, timing and navigation. These technologies may be applied to a wide variety of problems in food, water and human security, climate change, environmental management, disaster management and telemedicine and tele-education. The course will provide an overview of the main applications of space systems to support sustainable development. The course content will be supplemented by hands-on workshops in which students will have the opportunity to work with satellite data to solve real-world problems.

DP requirements: None

Assessment: Coursework 45% and examination 55%

EEE5126Z SPACE MISSION ANALYSIS AND DESIGN

15 NQF credits at HEQSF level 9; block release.

Convener: Professor P Martinez

Course outline:
Spacecraft are considered to be part of a space system that comprises both a space segment and a ground segment. This requires an understanding of the space environment and its effects on spacecraft, as well as the basic principles of astronautics to describe satellite orbits and spacecraft trajectories. This course aims to provide a systematic introduction to all the aspects and processes involved in the definition, design, development, testing and operation of space systems. Students are introduced to analysis tools that can be used to explore different mission architectures from the point of view of the space environment, Earth coverage, orbit selection, mission operations and
data/information flow and analysis. The course will also address access to space and space transportation from a mission design perspective.

DP requirements: None
Assessment: Coursework 45% and examination 55%

EEE5127Z SPECIAL TOPICS IN SPACE STUDIES
5 NQF credits at HEQSF level 9
Convener: Professor P Martinez
Course outline: This course provides an introduction to a highly specialized or cutting-edge topic in space studies. The course will cover an important topic in space studies that is not covered by other courses. The topic will be presented by a leading practitioner in the field. The course will be delivered through lectures and supplemented by the use of online resources. The course convener and/or presenter will set goals for structured self-learning to complement the classroom learning and deepen the students’ knowledge of the special topic.
DP requirements: None
Assessment: Coursework 45% and examination 55%

EEE5128Z NUCLEAR REACTOR THEORY AND DESIGN
20 NQF credits at HEQSF level 9
Convener: Emeritus Professor CT Gaunt
Course outline: This advanced course aims to develop strong concepts of engineering theory and design as applied in the context of nuclear power reactors. Topics include: nuclear reactor engineering theory and design, with an emphasis on pressurised water reactors: types and generations of power reactors; neutron life cycle; reactor operation theory; reactor core design; thermal-hydraulic analysis; core power density and effect on reactor size, control and shielding; corrosion and materials properties.
DP requirements: None
Assessment: Coursework 30%, examination 70%.

EEE5129Z NUCLEAR REACTOR OPERATIONS AND SAFETY
20 NQF credits at HEQSF level 9
Convener: Emeritus Professor CT Gaunt
Course outline: This advanced course aims to establish strong concepts of the operation and safety of complex systems and the application in the context of nuclear power stations. Topics include: functional description and design of main components of primary, secondary, auxiliary and safety systems: physical phenomena determining order of magnitude of key parameters of reactor operation; system modelling, normal operating transients, accident scenarios and extreme event identification; shutdown and restart; reactor coolant system; reactor protection; electricity supplies needed for production and safety; and simulators.
DP requirements: None
Assessment: Coursework 30%, examination 70%.

EEE5130Z REGULATORY REQUIREMENTS FOR NUCLEAR POWER
20 NQF credits at HEQSF level 9
Convener: Emeritus Professor CT Gaunt
Course outline: This course aims to develop an advanced understanding of nuclear facility licencing, assess the integration of nuclear energy into large power systems, and understand environmental impact assessment and management. Topics include: safety requirements and licencing processes for nuclear plants: nuclear regulation; design philosophy; radiation protection management; emergency preparedness; verification and assurance; learning from incidents; international peer review. Energy
regulation: energy regulator, integrated energy planning; independent system operators; market systems. Environmental regulation: environmental impact analysis; environmental management plans; and monitoring.

DP requirements: None
Assessment: Coursework 30%, examination 70%.

EEE5131Z MICROWAVE FILTERS
Offered on Demand
20 NQF credits at HEQSF level 9
Convener: Associate Professor R Geschke
Course outline:
The course is presented over five days and presents a systematic progression of topics from specification and theoretical synthesis, CAD-assisted design and practical manufacturing techniques for microwave filters operating in the frequency ranges of typical radar systems.
DP requirements: 80% attendance and submission of seminars and tutorial assignments
Assessment: Coursework 50%, Examination 50%

EEE5132Z SPECIAL TOPIC IN RADAR F
20 NQF credits at HEQSF level 9
Convener: Associate Professor D O'Hagan
Course entry requirements: An Engineering Honours Degree or equivalent.
Course outline:
This course is a presentation and study of a specialist topic in the field of Radar and Electronic Defence. A student will attend 35 hours of lectures in block release format in 1 week. This will be followed by about 5 weeks of tutorials and projects. Assessment is by means of coursework 30% and a final examination 30%.
DP requirements: 80% attendance and submission of seminars and tutorial assignments
Assessment: 100%

EEE5133Z SPECIAL TOPICS IN SPACE TECHNOLOGY B
5 NQF credits at HEQSF level 9
Convener: Professor P Martinez
Course outline:
This course provides an introduction to a highly specialised or cutting-edge topic in space studies. The topic will be presented by a leading practitioner in the field. The course will be delivered through lectures, supplemented by the use of online resources and distance-learning methods. The course convener and/or presenter will set goals for structured self-learning to complement the classroom learning and hence deepen the course participant’s knowledge of the special topic in question.
DP requirements: 80% attendance at all lectures and learning events and submission of all assignments.
Assessment: Coursework 45%, Examination 55%

EEE5134Z SPECIAL TOPICS IN SPACE TECHNOLOGY C
5 NQF credits at HEQSF level 9
Convener: Professor P Martinez
Course entry requirements: An Engineering degree or equivalent four-year degree.
Course outline:
This course provides an introduction to a highly specialized or cutting-edge topic in space studies. The topic will be presented by a leading practitioner in the field. The course will be delivered through lectures, supplemented by the use of online resources and distance-learning methods. The course convener and/or presenter will set goals for structured self-learning to complement the
classroom learning and hence deepen the course participant’s knowledge of the special topic in question.

DP requirements: 80% attendance at all lectures and learning events and submission of all assignments.

Assessment: Coursework 45%, Examination 55%

EEE5135Z INFORMATION THEORY

20 NQF credits at HEQSF level 9

Convener: Associate Professor M Dlodlo

Co-requisites: Postgraduate standing in Electrical Engineering and exposure to undergraduate telecommunications content

Course outline:
This course explains the basic ideas of information theory and the correspondences between the elements of this theory and certain natural concepts of importance in a wide number of fields, such as transmission, storage, authoring and protection of data. On the basis of simple concepts from probability calculus, models are developed for a discrete information source and a discrete communication channel. Further, the theoretical basics for developing source coding algorithms is provided, as well as the basics of optimal data transmission through a discrete communication channel. Introduction to error-correcting codes; mathematical basics; block codes fundamentals; cyclic codes; co-operating codes; soft-decision decoding; convolutional codes; iterative decoding (turbo codes, LDPC codes); applications.

DP requirements: None

Assessment: Coursework 30%, Examination 70%

EEE5136Z STATISTICAL SIGNAL THEORY

20 NQF credits at HEQSF level 9

Convener: Dr A Murgu

Course entry requirements: MAM2083F/S, EEE2036S, EEE3086F, or equivalents.

Co-requisites: None

Course outline:
This course originates in the realm of causal uncertainty over observed phenomena due to incomplete information from the real world. The theory of probability seeks to mathematically verify whether or not predictions about these phenomena are justifiable and pragmatic. The course challenges the participants to assume the probabilistic model of events where some of the possible determining factors may be unavailable. Mathematical statistical theory then enables us to examine the concepts and measure the likelihood of the relevance of those predictions to the physical world and our engineering applications within it. The development will include topics such as: probability theory, random variables, functions of a random variable, two or more random variables, sequences of a random variable, introduction to stochastic processes, second-order processes, and applications of random processes in communication systems.

DP requirements: DP Requirement: Test Marks >= 40%

Assessment: Coursework 40%, Examination 60%

EEE5137Z OPTICAL COMMUNICATIONS

Offered on Demand

20 NQF credits at HEQSF level 9

Convener: Professor A Baghai-Wadji

Course entry requirements: None

Co-requisites: None

Course outline:
This course aims to introduce advanced students to the physics of optoelectronic communication devices and their applications to communication systems. Topics include: optical fibre
characteristics, lasers and light wave modulation, photonics, noise, receiver design, error control and system performance.

DP requirements: None

Assessment: Coursework 30%, Examination 70%

EEE5138Z
BROADBAND COMMUNICATION NETWORKS
20 NQF credits at HEQSF level 9
Convener: Mr N Ventura
Course entry requirements: Postgraduate standing in Electrical Engineering or background in undergraduate communication engineering course work.
Co-requisites: None
Course outline:
Enterprises are faced with demands that focus their attention on the need to design, evaluate, manage and maintain networks infrastructures to process large quantity of data, move portions of the information technology operation to a cloud computing infrastructure, have large number of objects providing services to end users and have mobile devices as an indispensable part of an enterprise generating unique demands on network planning and management.

The course aims to develop an understanding of key innovation areas in Modern Networking, which are closely related but nevertheless represent different research domains, namely:

1. Network of the Future (NoF) driven by Mobile Broadband evolution towards high bandwidth heterogenous access networks, single core network architectures, and the notion of Software Defined Networks (SDN) and the Openflow protocol;
2. Traditional concepts of virtual networks and the modern approach to network virtualization; the concept of software defined infrastructure;
3. Cloud-based Networks and Service Delivery Platforms (SDP), enabling much more scalable and cost efficient realizations and role outs of networks and innovative applications;
4. Internet of Things (IoT) and unified Machine to Machine (M2M) communications enabling the convergence of a broad spectrum of monitoring and control applications;
5. The 5G infrastructure which is expected to become the core of the digital society and economy. Anything as a service (XaaS) everywhere is envisioned as among the primary drivers for global adoption. 5G will support mission-critical machine communications and massive machine type of traffic.

DP requirements: 80% attendance and handing in of tutorials
Assessment: Coursework 20%, Project 30% and Examination 50%

EEE5139Z
WIRELESS DATA NETWORK CONVERGENCE
20 NQF credits at HEQSF level 9
Convener: Associate Professor OE Falowo
Course entry requirements: Postgraduate standing in Electrical Engineering or EEE3084W or EEE3083F and EEE3085S or equivalent.
Co-requisites: Postgraduate standing in Electrical Engineering and prior exposure to undergraduate telecommunications content.
Course outline:
This course aims to introduce students to advanced wireless networks with an emphasis on architecture, components, and protocols, as well as the latest developments in 4G towards 5G wireless standards. New concepts of mobility management, software defined network and new developments will be covered together with 3GPP standards and Internet Engineering Task Force (IETF) standard protocols. These examples will enable student engagement with the theoretical material and the related practical issues. Students will be able to understand the challenges associated with the latest generation of wireless networks and gain insight into new techniques under development.
DP requirements: None
Assessment: Coursework 40%, Examination 60%
EEE5140Z SOFTWARE DEFINED RADIO
Offered on Demand
20 NQF credits at HEQSF level 9
Convener: Dr S Winberg
Course outline:
This course aims to provide advanced students with an overview of a software-defined radio systems and the technologies necessary for successful implementation, as well as exposure to significant computer and hands-on project work necessary to implement working SDR systems. Students will be able to: understand the fundamentals of the communication link, modulation and demodulation, digital filters, dealing with uncertainty and errors in the channel, error detection and correction mechanisms, characteristics of wireless network protocols, and be able to discuss the allocation of radio resources and technologies. Understand the systems required by a software-defined radio to function and the trade-offs, benefits and limitations encountered in choosing a software-defined radio system design. Understand elementary antenna design to accommodate the needs of a particular software-radio system. Calculate an accurate link budget for a software-defined radio system or other wireless communications link. Understand how analogue and digital technologies are used for software-defined radios and the topologies and applications of those networks.
DP requirements: Minimum 45% for project
Assessment: Coursework 50%, Examination 50%

EEE5141Z SPECIAL TOPICS IN SPACE TECHNOLOGY D
Offered on Demand
5 NQF credits at HEQSF level 9
Convener: Professor P Martinez
Course outline:
This course provides an introduction to a highly specialized or cutting-edge topic in space studies. The course will cover an important topic in space studies that is not yet covered by other courses. The topic will be presented by a leading practitioner in the field. The course will be delivered through lectures, supplemented by the use of online resources and methods. The course will set goals for structured self-learning to complement the classroom learning and deepen knowledge of the special topic.
DP requirements: None
Assessment: Coursework (45%), Examination (55%)

EEE5142Z SPECIAL TOPICS IN SPACE TECHNOLOGY E
Offered on Demand
5 NQF credits at HEQSF level 9
Convener: Professor P Martinez
Course outline:
This course provides an introduction to a highly specialized or cutting-edge topic in space studies. The course will cover an important topic in space studies that is not yet covered by other courses. The topic will be presented by a leading practitioner in the field. The course will be delivered through lectures, supplemented by online resources and methods. The course will set goals for structured self-learning to complement the classroom learning and deepen knowledge of the special topic.
DP requirements: None
Assessment: Coursework (45%) Examination (55%)

EEE6000W PHD IN ELECTRICAL ENGINEERING
360 NQF credits at HEQSF level 10
Course outline:
A PhD thesis is required to be an original, coherent and consistent body of work which reflects the candidate’s own efforts. The thesis may not be more than 80 000 words. A candidate will undertake
research, and such advanced coursework as may be required, under the guidance of a supervisor or supervisors appointed by Senate.

DP requirements: None

Assessment: Written work counts 100%.

END5050X MASTERS JOURNAL PAPER REQUIREMENT

0 NQF credits at HEQSF level 9

Course outline:
The aim of submitting a research paper for the masters’ degree is to develop an understanding of what is required for the publication of research findings. To this end a candidate shall submit a summary of the key aspects of the dissertation, presented in the form of a paper which is, potentially, of publishable standard, approved by a Panel of Assessors. This is a requirement for candidates submitting either a 180 or 120 credit dissertation for the following degrees: MSc in Construction Economics and Management, MSc(Eng), MSc(ProjMan), MPhil, MSc in Property Studies. Refer to the appropriate degree rules.

DP requirements: None
MECHANICAL ENGINEERING

The Department offers the following Postgraduate Degree Programmes:

Research project and courses are offered through which suitably qualified graduates may qualify for the degrees of BSc Honours in Materials Science, MSc (Eng), MPhil (Eng), MEng and PhD. These areas of specialisation include:

- Computational Mechanics
- Electro-Mechanical Engineering
- Energy and Development Studies
- Engineering Management
- Materials Engineering
- Mechanical Engineering
- Sustainable Energy Engineering

Research Entities

- Blast Impact and Survivability Research Unit (BISRU)
- Centre for Materials Engineering (CME)
- Centre for Research in Computational and Applied Mechanics (CERECAM)
- Energy Research Centre (ERC)

The Department of Mechanical Engineering is situated in the Electrical & Mechanical Engineering, McMillan and Menzies Buildings on the Groote Schuur campus, fronting onto University Avenue. It can be accessed via University Avenue and Library Road.

Staff

Professor and Head of Department:
RD Knutsen, BSc PhD Cape Town MSAIMM MSAIMechE

Deputy Heads of Department:
Research: Professor GS Langdon, BEng PhD Liverpool MIMechE CEng
Teaching: Associate Professor CJ von Klemperer, BSc(Eng) MSc(Eng) PhD Natal

Professors:
T Bello-Ochende, PrEng B.Eng M.Eng Ilorin PhD Duke MASME.
PG Rousseau, PrEng BEng (Mech) MEng (Mech) PhD Pret OPM HBS
H Winkler, MSc, Berkley MA PhD Cape Town

Emeritus Professor:
KF Bennett, BSc(Eng) Cape Town MSc CNAA PhD Cape Town FSAIMechE
J Gryzagoridis, PrEng BSc(Eng) Lamar MSc(Eng) Texas A&M PhD Cape Town MSAIMechE
M(SA)IRAC M(SA)INT M(SAAM) M(N.YORK) ACAD.SCIENCES
RB Tait, PrEng BSc(Hons) Rhodes MA Oxon BSc(Eng) PhD Cape Town MSAIMechE

Adjunct Professor:
L Jestin, MSc(Eng) PhD Marseille HDR Provence
ADB Yates, BSc(Eng) MSc(Eng) PhD Cape Town MSAIMechE

SARChI South African Research Chair in Computational Mechanics:
Professor BD Reddy, BSc(Eng) Cape Town PhD Cantab
SARChI South African Research Chair in Industrial CFD:
Professor AG Malan, PrEng BEng (Mech) MEng (Mech) Pret PhD Swansea

Honorary Professor:
D Karagiozova, PhD Ukrainian Academy of Science

Associate Professors:
BI Collier-Reed, PrEng MSc(Eng) PhD Cape Town FSAIMechE
WF Fuls, BSc(Eng) MSc(Eng) PhD(Eng) NWU
R Kuppuswamy, BEng(Hons) MTech PhD Singapore SMSME
HD Mouton, BSc Eng Pretoria BSc Unisa B Eng Hons M Eng Pretoria PhD Eng NWU
G Vicatos, PrEng BSc(MechElec)(Marine) Newcastle MSc(Aero) DIC London PhD Cape Town

Senior Lecturers:
S Chung Kim Yuen, BSc(Eng) MSc(Eng) PhD Cape Town
TJ Cloete, BIng Stell MIng Stell
C Findeis, NHD(Mech Eng) Pret
D Findeis, BSc(Eng) MSc(Eng) Cape Town MSAIMechE
SL George, BSc(Eng) MSc(Eng) PhD Cape Town
R Govender, BSc(Eng) MSc(Eng) PhD Cape Town
EB Ismail, BSc(Eng) MSc(Eng) Cape Town
BC Kloot, BSc(Eng) MSc(Eng) PhD Cape Town (Academic Development Lecturer)
HT Pearce, BSc(Eng) Cape Town MS PhD Illinois
S Parker, BSc(Eng) MSc(Eng) Cape Town
CB Shaw, BSc(Eng) MSc(Eng) HDE MPhil(EngMan) DPhil(EngMan) Cape Town

Lecturers:
MN Ngoepe, BSc(Eng) Cape Town, DPhil Oxon
LC Raw, BSc(Eng) MSc(Eng) Cape Town

Senior Scholar
GN Nurick, PrEng MSc(Eng) Natal PhD Cape Town FSAIMechE MASME FSAAE

Part-Time Lecturers:
J Evans, BA LLB Cape Town

Principal Technical Officers:
H Emrich
P Smith

Chief Technical Officers:
D Jacobs
R Whittemore, BSc(Eng) Cape Town

Senior Technical Officer:
Heinrich Christians

Technical Assistant:
P Jacobs

Laboratory Attendants:
W Slaverse

Departmental Manager
CM Thomas HED BSc Unisa BSc(Hons) NWU MSc(MCM) Natal PGDip (EdTech) Cape Town
Administrative Officer (Undergraduate):
R Maree

Administrative Assistant (Finance):
B Glass

Administrative Assistant (Postgraduate):
C Jordaan

Senior Secretary
S Reizenburg

Departmental Assistant
G Doolings

Postgraduate Programmes
- Bachelor of Science (Honours) in Materials Science
- Master of Engineering by 120 credits coursework and a 60 credit dissertation
- Master of Science in Engineering by 180 credit dissertation
- Master of Science in Engineering by 60 credits coursework and a 120 credit dissertation
- Master of Philosophy by coursework and dissertation
- Doctor of Philosophy

Honours Programmes

Bachelor of Science (Honours) in Materials Science
[EH005MEC04]

Programme Convener:
SL George BSc(Eng) MSc(Eng) PhD Cape Town

The Department offers a BSc(Hons) in Materials Science to graduates with a three-year Bachelor of Science degree. The aim is to provide one year of intensive training in Materials Science and Technology. The broad-based instructional approach prepares graduates for careers in a wide range of industrial settings, from small manufacturing companies to large corporations producing bulk commodity products, and R&D laboratories. In addition the BSc(Hons) in Materials Science programme prepares students for registration for research degrees in Materials Engineering at the Master’s and ultimately Doctoral levels.

The programme runs over one year, with students taking a structured programme of 144 credits of coursework, including a project, as follows.

Core Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC4091Z</td>
<td>Honours Research Project..................</td>
<td>40</td>
<td>08</td>
</tr>
<tr>
<td>MEC4096Z</td>
<td>Manufacture & Properties of Composites</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>MEC4097Z</td>
<td>Manufacture & Properties of Ceramics</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>MEC4098Z</td>
<td>Properties & Manufacture of Metallic Materials</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>MEC4100Z</td>
<td>Manufacture & Properties of Polymers</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>MEC4114Z</td>
<td>Experimental Techniques in Materials Science</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Approved Electives..............................</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Elective Courses

*Select 40 credits from the following courses:

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC3045F</td>
<td>Experimental Methods</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>MEC3060F</td>
<td>Materials under Stress</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>MEC4099Z</td>
<td>Phase Transformations in Materials</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>END5044F</td>
<td>Professional Communication Studies</td>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

Master's Programmes

MSc in Engineering specialising in Mechanical Engineering [MEC01]

Research Master’s by dissertation

[EM023MEC01]

EM023 Research Master’s by dissertation

<table>
<thead>
<tr>
<th>Core Course</th>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC5000W</td>
<td>Dissertation Mechanical Engineering</td>
<td>180</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Total credits: **180**

Research Master’s by coursework and dissertation

[EM024MEC01]

EM024 Research Master’s by coursework and dissertation

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC5010Z</td>
<td>Dissertation Mechanical Engineering</td>
<td>120</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Elective courses approved by supervisor</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEC5097Z</td>
<td>Dissertation Preparation</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Total credits: **180**

MSc in Engineering specialising in Materials Engineering [MEC03]

The Centre for Materials Engineering prepares candidates for the Master of Science in Engineering in Materials Engineering and for the Doctor of Philosophy.

The Master of Science in Engineering specialising in Materials Engineering can be either by dissertation only [EM023] or by coursework (approved by your supervisor) and dissertation [EM024].

Research Master’s by dissertation

[EM023MEC03]

EM023 Research Master’s by dissertation

<table>
<thead>
<tr>
<th>Core Course</th>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
</table>
Number | Course | NQF Credits | HEQSF Level
--- | --- | ----------- | -----------
MEC5070W | Dissertation Materials Engineering | 180 | 9
END5050X | Master’s journal paper | 0 | 9
Total credits | | | | 180

Research Master’s by coursework and dissertation
[EM024MEC03]
EM024 Research Master’s by coursework and dissertation

Core Courses
Number	Course	NQF Credits	HEQSF Level
MEC5071Z | Dissertation Materials Engineering | 120 | 09
Elective courses approved by supervisor | 0 | 0
MEC5097Z | Dissertation Preparation | 0 | 9
END5050X | Master’s journal paper | 0 | 9
Total credits | | | | 180

MSc in Engineering specialising in Sustainable Energy Engineering
[EM023MEC07]

Professor and Convener:
H Winkler MSc Berkeley MA PhD Cape Town

Compulsory Courses
Number	Course	NQF Credits	HEQSF Level
MEC5060W | Dissertation: Sustainable Energy Engineering | 180 | 9
END5050X | Master’s journal paper | 0 | 9
Approved Electives | 60 | 9
Total credits | | | | 200

MSc in Engineering specialising in Sustainable Energy Engineering
[EM024MEC07]
Not offered in 2017

Professor and Convener:
H Winkler MSc Berkeley MA PhD Cape Town

The Energy Research Centre offers a structured Master’s Programme in Sustainable Energy Engineering, specifically aimed at engineering graduates. Students are required to complete 80 credits of course work, the courses being chosen from the list below. Courses other than those on the list below may be taken subject to approval by the Director of the Energy Research Centre. To qualify for the degree in MSc(Eng), candidates are required to complete a supervised dissertation, equivalent to a further 120 credits, the topic of which requires the approval of the Director of the ERC.

Compulsory Courses
Number	Course	NQF Credits	HEQSF Level
MEC5061W | Dissertation: Sustainable Energy Engineering | 120 | 9
MEC5091Z | Introduction to Energy Policy & Sustainable Energy Engineering | 20 | 9
MEC5097Z | Dissertation Preparation | 0 | 9
END5050X | Master’s journal paper | 0 | 9
Approved Electives | 60 | 9
Total credits | | | | 200
Elective Courses (60 credits must be selected from the following list)

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC5056Z</td>
<td>Energy Efficiency & Demand Side Management</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>MEC5059Z</td>
<td>Energy Modelling</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>MEC5075Z</td>
<td>New & Renewable Energy Technologies</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>MEC5089Z</td>
<td>Energy Project</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>MEC5090Z</td>
<td>Energy & Climate Change</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>

Master of Philosophy specialising in Energy & Development Studies [EM025MEC08]

Professor and Convener:
H Winkler MSc Berkeley MA PhD Cape Town

Compulsory Course

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC5093W</td>
<td>Dissertation Energy & Development Studies</td>
<td>180</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total credits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total credits: 180

Master of Philosophy specialising in Energy & Development Studies [EM026MEC08]

Not offered in 2017

Professor and Convener:
H Winkler MSc Berkeley MA PhD Cape Town

The Energy Research Centre offers a structured Master’s Programme in Energy and Development Studies, specifically aimed at graduates from diverse academic backgrounds. Students are required to complete 80 credits of coursework, the courses being chosen from the list below. Courses other than those on the list below may be taken subject to the approval of the Director of the Energy Research Centre. To qualify for the MPhil degree candidates are required to complete a supervised dissertation, equivalent to a further 120 credits, the topic of which requires the approval of the Director of the ERC.

Compulsory Course

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC5092W</td>
<td>Dissertation Energy & Development Studies</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td>MEC5091Z</td>
<td>Introduction to Energy Policy & Sustainable Energy Engineering</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>MEC5097Z</td>
<td>Dissertation Preparation</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Approved Electives</td>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total credits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total credits: 200

Elective Courses (60 credits must be selected from the following list)

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC5059Z</td>
<td>Energy Modelling</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>MEC5075Z</td>
<td>New & Renewable Energy Technologies</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>MEC5087Z</td>
<td>Energy Markets & Governance</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>MEC5088Z</td>
<td>Energy Poverty & Development</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>MEC5089Z</td>
<td>Energy Project</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>MEC5090Z</td>
<td>Energy & Climate Change</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>
Postgraduate students not registered for either of the above programmes may register for the above courses with the permission of the Director of the Energy Research Centre.

Master of Philosophy specialising in Computational Mechanics [EM026MEC01]

Professor and Convener:
BD Reddy, OMB BSc(Eng) Cape Town PhD Cantab FRSSAf FSAAE MASSAf

The Department offers the following courses in Computational Mechanics. This area of study is truly interdisciplinary and is available to all postgraduate students in the Faculty.

Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC5010Z</td>
<td>Dissertation</td>
<td>120</td>
<td>09</td>
</tr>
<tr>
<td>MEC5097Z</td>
<td>Dissertation Preparation</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

Elective courses

Select courses to the value of 60 credits:

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC5063Z</td>
<td>An Introduction to Finite Elements</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>MEC5064Z</td>
<td>Finite Element Analysis</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>MEC5065Z</td>
<td>Programming for Scientists & Engineers</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>MEC5066Z</td>
<td>Continuum Mechanics</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>MEC5067Z</td>
<td>Non-linear Material Behaviour</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>MEC5068Z</td>
<td>Topics in Computational & Applied Mechanics</td>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

Research Masters in Engineering Management [MEC02]

The Department offers a Master of Science specialising in Engineering Management and a Master of Philosophy specialising in Engineering Management as research only master’s programmes. The nature of the research project could either be of a strongly interdisciplinary nature, in which case the candidate will register for a Master of Philosophy specialising in Engineering Management. Alternatively, if the research project is strongly focussed on the scientific method or an appropriate engineering method, then the candidate will register for a Master of Science specialising in Engineering Management.

Master of Science in Engineering specialising in Engineering Management [EM023MEC02]

Doctor and Convener:
CB Shaw, BSc HDE MPhil(EngMan) PhD Cape Town

Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC5047W</td>
<td>Dissertation: Engineering Management</td>
<td>180</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

Total credits .. 180
Master of Philosophy specialising in Engineering Management
[EM025MEC02]

Doctor and Convener:
CB Shaw, BSc HDE MPhil(EngMan) PhD Cape Town

Compulsory Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC5047W</td>
<td>Dissertation: Engineering Management</td>
<td>180</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Total credits</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Master of Philosophy specialising in Engineering Management
[EM026MEC02]
Not offered in 2017

Programme Convener:
CB Shaw, BSc HDE MPhil(EngMan) PhD Cape Town

Although this programme is in the Faculty of Engineering and the Built Environment it is designed for graduates from any discipline interested in gaining interdisciplinary knowledge and an advanced understanding of key subjects in management practice. The programme is focused around principles, tools, techniques and thinking for the development of management practice. The programme includes coursework and a dissertation. The dissertation involves sustained supervised research and writing-up throughout the period of study. The coursework includes online work and taught modules integrated and applied in the context of the work environment. To qualify for the MPhil specialising in Engineering Management, candidates are required to complete a supervised dissertation, equivalent to a further 120 credits, on an approved topic.

Core Course

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC5025Z</td>
<td>Dissertation</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td>MEC5097Z</td>
<td>Dissertation Preparation</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>END5050X</td>
<td>Master’s journal paper</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>MEC5035Z</td>
<td>Project Management</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>MEC5054Z</td>
<td>Introduction to Business Administration</td>
<td>40</td>
<td>9</td>
</tr>
<tr>
<td>Total credits</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Please note that certain courses run every alternate year and courses will only run if there are sufficient students registered for the course.

Master of Philosophy specialising in Engineering Management
[EM027MEC02]
Not offered in 2017

Programme Convener:
CB Shaw, BSc HDE MPhil(EngMan) PhD Cape Town

The Department offers a structured Master’s Programme in Engineering Management. This is an interdisciplinary programme primarily aimed at engineering graduates, although suitable for non-engineering graduates. Students are required to complete a minimum of 120 credits of coursework, chosen from the list below. To qualify for the MPhil degree specialising in Engineering
Management, candidates are required to complete a supervised minor dissertation, equivalent to a further 60 credits, the topic of which requires the approval of the programme convener.

Note: Candidates are required to complete courses to the value of 120 credits from the list of elective-core courses listed below, to be selected in consultation with the Programme Convener.

<table>
<thead>
<tr>
<th>Core Course</th>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC5095Z</td>
<td></td>
<td>Minor Dissertation</td>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td>MEC5097Z</td>
<td></td>
<td>Dissertation Preparation</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

Select courses to the value of 120 credits

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC5035Z</td>
<td>Project Management</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>MEC5037Z</td>
<td>Operations Management Project</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>MEC5046Z</td>
<td>Systems Engineering Practice</td>
<td>40</td>
<td>9</td>
</tr>
<tr>
<td>MEC5054Z</td>
<td>Introduction to Business Administration</td>
<td>40</td>
<td>9</td>
</tr>
<tr>
<td>MEC5080Z</td>
<td>Managing New Venture Projects</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total credits</td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

*Please note that certain courses run every alternate year and courses will only run if there are sufficient students registered for the course.

Doctoral Programmes

Doctor of Philosophy

ED001 Doctor of Philosophy is a Research Degree

<table>
<thead>
<tr>
<th>Core Course</th>
<th>Number</th>
<th>Course</th>
<th>NQF Credits</th>
<th>HEQSF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC6000W</td>
<td></td>
<td>Thesis (Mechanical Engineering)</td>
<td>360</td>
<td>10</td>
</tr>
<tr>
<td>MEC6002W</td>
<td></td>
<td>Thesis (Engineering Management)</td>
<td>360</td>
<td>10</td>
</tr>
<tr>
<td>MEC6003W</td>
<td></td>
<td>Thesis (Sustainable Energy Engineering)</td>
<td>360</td>
<td>10</td>
</tr>
<tr>
<td>MEC6004W</td>
<td></td>
<td>Thesis (Materials Engineering)</td>
<td>360</td>
<td>10</td>
</tr>
<tr>
<td>MEC6005W</td>
<td></td>
<td>Thesis (Energy & Development Studies)</td>
<td>360</td>
<td>10</td>
</tr>
<tr>
<td>MEC6006W</td>
<td></td>
<td>Thesis (Engineering Education)</td>
<td>360</td>
<td>10</td>
</tr>
</tbody>
</table>

Course descriptions are set out in the section Courses Offered. The course code abbreviation for Mechanical Engineering is MEC.

Course Outlines

MEC4088Z MANUFACTURING WITH MATERIALS

Not offered in 2017

12 NQF credits at HEQSF level 8

Convener: Professor RD Knutsen

Assessment:
MEC4096Z MANUFACTURE & PROPERTIES OF COMPOSITES
12 NQF credits at HEQSF level 8
Convener: Dr C Woolard
Course entry requirements: MEC2042F or BSc (Hons) MatSc candidate
Course outline:
This course aims to develop an advanced understanding of the manufacture and properties of composites. Topics include: history of composites; carbon, glass and aramid fibres; functions of the reinforcement and matrix, polymer-, metal- and ceramic-matrix composites; manufacture of composites; thermal properties, elastic properties of fibre composites; fracture and toughness, the fibre/matrix interface; geometric aspects; laminate theory and the strength of laminates; testing of composites and environmental effects; selection, and modification and design of composites.
DP requirements: None
Assessment: Class tests, examination 3 hours.

MEC4097Z MANUFACTURE AND PROPERTIES OF CERAMICS
8 NQF credits at HEQSF level 8
Convener: Professor RD Knutsen
Course entry requirements: MEC2042F or BSc (Hons) MatSc candidate
Course outline:
This course aims to develop an advanced understanding of the manufacture and properties of ceramics. Topics include: history of ceramics; traditional ceramics; glasses and glass ceramics; advanced ceramics; chemical bonding in ceramics; physical, mechanical and chemical properties of ceramics, nucleation and growth phenomena; production and properties of engineering ceramics, refractories; fracture and reliability of ceramics; powder technologies; and selection and design of ceramic components.
DP requirements: 35% minimum for class record.
Assessment: Class tests, examination 3 hours (40% min for examination).

MEC4098Z PROPERTIES AND MANUFACTURE OF METALLIC MATERIALS
16 NQF credits at HEQSF level 8
Convener: Professor RD Knutsen
Course entry requirements: MEC2042F or BSc(Hons) MatSc candidate
Course outline:
This course aims to develop an advanced understanding of the properties and manufacture of metallic materials. The course covers four main topics, namely, the solidification process; the metallurgy of ferrous, non-ferrous and light metal alloys; the relationship between manufacturing processes, mechanical properties and microstructures of metallic materials; and an introduction to metallic corrosion. The course also includes a week-long intensive module on wrought aluminium processing.
Lecture times: This course is presented in the first semester
DP requirements: None
Assessment: Projects, class tests, examination 3 hours.

MEC4099Z PHASE TRANSFORMATIONS IN MATERIALS
8 NQF credits at HEQSF level 8
Convener: Professor RD Knutsen
Course entry requirements: MEC3060F
Course outline:
This course aims to give an understanding of the thermodynamics and kinetics of phase transitions. The course covers the following topics: the application of thermodynamics in kinematics in materials science and engineering; thermodynamic states of variables; the first law of thermodynamics (energy conservation law); phase transitions (liquid/solid and solid state matter);
single component and binary systems; equilibrium phase diagrams; and diffusion in liquid and solid state matter.

Lecture times: This course is presented in the first quarter of the year

DP requirements: Completion of all practicals & assignments

Assessment: Class record (30%); 2 hour examination (70%).

MEC4100Z
MANUFACTURE & PROPERTIES OF POLYMERS
12 NQF credits at HEQSF level 8
Convener: Dr C Woolard
Course entry requirements: MEC2042F or BSc(Hons) MatSc candidate
Course outline:
This course aims to develop an advanced understanding of the manufacture and properties of polymers. Topics include: polymer nomenclature; morphology; bonding; molecular weight, polymerization, crystallisation; polymer types; rheology; manufacturing methods; applications; polymer identification; polymer modification, additives; analytical techniques; biodegradability; and selection and design.
DP requirements: None
Assessment: Practicals, class tests, examination 3 hours.

MEC4111Z
NUCLEAR MANUFACTURING AND CONSTRUCTION ENG MANAGEMENT
12 NQF credits at HEQSF level 8
Convener: Dr C Shaw
Course outline:
This course covers: Application of appropriate tools, techniques and theories for management problem solving; an overview of how construction projects are initiated and driven forward; roles and responsibilities of the various human resources involved in construction projects; knowledge of forms of regulations, contract and of law relevant to construction projects; health and safety; costing and financial implications in construction projects; processes and conversion of activities into processes in a nuclear power plant; value chain for identifying improvements; understanding of the origins of “wastes” in an organisation.
Assessment: Group assignment and presentation (10%); Individual assignments (20%); Written examination (70%)

MEC4114Z
EXPERIMENTAL TECHNIQUES IN MATERIALS SCIENCE
16 NQF credits at HEQSF level 8
Convener: Dr SL George
Course entry requirements: Registration for BSc(Hons) in MatSc
Course outline:
This course aims to provide detailed insight into the experimental techniques for manipulating and investigating the properties and the microstructure of engineering materials. Techniques include: heat treatment (furnace construction, temperature control, furnace environment); mechanical testing (hardness, tensile/compression/bending, impact, work-hardening, fatigue and creep); corrosion resistance (exposure and potentiostatic/dynamic tests); thermal analysis including thermo-dilatometry, thermo-gravimetry and differential scanning calorimetry; quantitative microstructure characterization (X-ray diffraction, light microscopy, electron microscopy including SEM, TEM, EDS and EBSD).
DP requirements: None
Assessment: Coursework 50%, Examination 50%
MEC5000W MASTER OF SCIENCE IN MECHANICAL ENGINEERING
DISSERTATION
180 NQF credits at HEQSF level 9
Course outline:
The dissertation should incorporate any or all of the following: design of all or part of an engineering project to a specification involving advanced concepts and theoretical principles; a research project of a theoretical or practical nature; a critical review of a specified topic based upon a comprehensive search of the literature or available data; development of an item of equipment or a technique involving novel features or advanced design; or any other study acceptable to the Faculty.
DP requirements: None
Assessment: Written work counts 100%.

MEC5010Z DISSERTATION MECHANICAL ENGINEERING
120 NQF credits at HEQSF level 9
Course entry requirements: MEC5097Z DP.
Course outline:
The dissertation should incorporate any or all of the following: design of all or part of an engineering project to a specification involving advanced concepts and theoretical principles; a research project of a theoretical or practical nature; a critical review of a specified topic based upon a comprehensive search of the literature or available data; development of an item of equipment or a technique involving novel features or advanced design; or any other study acceptable to the Faculty.
DP requirements: None
Assessment: Written work counts 100%.

MEC5024S STRUCTURAL IMPACT
12 NQF credits at HEQSF level 9
Convener: Professor G Langdon
Course outline:
This course aims to develop an advanced understanding of the importance of structural impact. Topics include: Static plastic behaviour of beams; plates and shells; dynamic plastic behaviour of beams, plates and shells; influence of transverse shear and rotary inertia; influence of finite displacements; strain rate sensitive behaviour of materials; dynamic progressive buckling; dynamic loading effects; plastic buckling; and scaling laws and experimental techniques.
DP requirements: None
Assessment: Project(s)

MEC5025W MASTERS DISSERTATION IN ENGINEERING MANAGEMENT
120 NQF credits at HEQSF level 9
Convener: Dr C Shaw
Course entry requirements: Completion of 60 credits of approved postgraduate coursework.
Course outline:
The dissertation should incorporate any or all of the following: design of all or part of an engineering project to a specification involving advanced concepts and theoretical principles a research project of a theoretical or practical nature; a critical review of a specified topic based upon a comprehensive search of the literature or available data; development of an item of equipment or a technique involving novel features or advanced design; or any other study acceptable to the Faculty.
DP requirements: None
Assessment: Written work counts 100%.
MEC5036Z MANAGING FOR PERFORMANCE IMPROVEMENT
Not offered in 2017
20 NQF credits at HEQSF level 9
Course outline:
This course aims to develop an advanced understanding of managing for performance improvement. Topics include: Productivity: definition and importance. Productivity models, measurement and quality. People and productivity. The nature of quality, costs of quality and Kaizen, and 14000; organising and managing for quality, quality engineering, quality assurance and control; ISO9000 series, techniques of quality control, vendor rating; process capability, precontrol and advanced techniques; total quality management, quality friction development. Just-in-Time; human factors in quality, the zero defects approach; computer use in quality systems. Job design, BPR and work improvement. Value analysis and simultaneous/concurrent engineering. Theory of constraints. Total productive maintenance. Continuous productivity; and improvement programmes.

MEC5037Z OPERATIONS MANAGEMENT PROJECT
Not offered in 2017
20 NQF credits at HEQSF level 9
Convener: Dr C Shaw
Course outline:
On the recommendation of the supervisor and the programme convenor, a student may be permitted to enter into a programme of individual study on a specialised topic. A statement of objectives must be agreed upon, and the course of study will be guided by the supervisor. The programme will involve the student in about 180 hours of work, and a written report must be submitted. The written report will be examined, and a further oral examination may be held.
DP requirements: None
Assessment: Project(s).

MEC5043Z DESIGN & MANAGEMENT OPERATIONAL SYSTEMS
Not offered in 2017
40 NQF credits at HEQSF level 9
Course outline:
This course aims to develop an advanced understanding of the design and management of operational systems. The topics will include viable systems modelling; the nature and characteristics of operational systems; core operational decision areas; the operations management process and socio-technical systems. Input from the Professional Communication Studies unit is included.
DP requirements: None

MEC5046Z SYSTEMS ENGINEERING PRACTICE
Not offered in 2017
40 NQF credits at HEQSF level 9
Convener: Dr C Shaw
Course outline:
This course aims to develop an advanced understanding of systems thinking and systems practice. Topics include: management and organisational concepts; qualitative mapping and modelling; and a system's approach to problem solving.
Lecture times: Block release (two contact modules).
DP requirements: None
Assessment: Position papers 50%, portfolio of projects and reflective papers 50%.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC5047W</td>
<td>MASTERS DISSERTATION IN ENGINEERING MANAGEMENT</td>
<td>180</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Course outline:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The dissertation should incorporate any or all of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the following: design of all or part of an</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>engineering project to a specification involving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>advanced concepts and theoretical principles; a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>research project of a theoretical or practical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nature; a critical review of a specified topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>based upon a comprehensive search of the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>literature or available data; development of a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>item of equipment or a technique involving novel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>features or advanced design; or any other study</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>acceptable to the Faculty.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DP requirements: None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment: Written work counts 100%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEC5048S</td>
<td>NON-DESTRUCTIVE TESTING & EVALUATION</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Course entry requirements: BSc(Eng) degree</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course outline: This course aims to develop</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>an advanced understanding of non-destructive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>testing and evaluation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topics include: Methods and guidance to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>non-destructive techniques. Selected topics in:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Principles of Ultrasonic inspection and methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and their applicability. Electronic Speckle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pattern Interferometry as applied to flaw</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>detection. Shearography as a novel optical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>non-contacting defect detection method. Eddy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>current versatility for the measurement of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>thickness of coatings, the detection of seams,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>creaks, voids and inclusions. Testing for flaws</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in composite materials by mechanical impedance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Infrared Thermography.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DP requirements: None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment: Project, November examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEC5049S</td>
<td>ADVANCED REFRIGERATION</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Not offered in 2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course entry requirements:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course outline: This course aims to develop</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>an understanding of advanced refrigeration.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topics include: Aspects of compression</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>refrigeration. Effects that degrade vapour</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>compression refrigeration; multiple compression;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>multiple evaporators; flash chambers; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cascade systems. Aspects of absorption</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>refrigeration. Theory of mixtures; absorption</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>continuous cycle; mathematical and graphical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>analysis of the cycle; intermittent systems;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lithium-bromide water system; water-ammonia-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hydrogen system; and aspects of combined</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>compression/absorption cycle: comparison of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>performance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DP requirements: None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment: Examination 3 hours.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEC5051Z</td>
<td>MECHANICAL ENGINEERING PROJECT</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Course entry requirements: Completion of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>appropriate postgraduate courses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course outline: On the recommendation of the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>supervisor and with the agreement of the Head</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of Department, a student registered for a Master's</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>degree may be permitted to enter into a programme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of individual study on a specialised topic. A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>statement of objectives and/or a syllabus must</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>be agreed upon, and the course of study will be</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>guided by a member of the department, usually the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>supervisor. The programme will involve the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>student in about 180 hours of work. This can</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>include assignments and projects of an</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>appropriate nature. The course will be assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>by examination or project or both and an oral</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>examination may be held thereafter, if required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DP requirements: None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment: Examination and/or project.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MEC5054Z INTRODUCTION TO BUSINESS ADMINISTRATION
Not offered in 2017
40 NQF credits at HEQSF level 9
Convener: Dr C Shaw
Course entry requirements: Registration for postgraduate qualification.

Course outline:
This course aims to provide an advanced introduction to business administration. Topics include: Introduction to business and the business environment; marketing management; finance management; human resources management; operations management; general management; quantitative methods in management economics, accounting, business and society.

Lecture times: Block release (two contact modules).

DP requirements: None

Assessment: Position papers 50%, portfolio of projects and reflective papers 50%.

MEC5056Z ENERGY EFFICIENCY & DEMAND SIDE MANAGEMENT
Not offered in 2017
20 NQF credits at HEQSF level 9
Convener: Mr A Hibberd

Course entry requirements: Registration for the MSc(Eng) in Sustainable Energy Engineering

Course outline:
This course aims to develop an understanding of energy efficiency and demand side management (DSM). Topics include: Energy efficiency and DSM technologies in the domestic, commercial and industrial sectors; energy management systems; measurement and verification (M&V) of energy efficiency measures; energy auditing, efficiency economics and tariff structures. One written long paper on an agreed topic and one group work exercise will be undertaken.

Lecture times: Practicals: Data Analysis. A set of energy use data is made available which needs to be analysed to identify patterns, trends, possible concerns.

DP requirements: Attendance at lectures and participation in the group project as well as submission of the long paper by the published deadline date.

Assessment: Long paper 25%, Group work 25%, Examination 50%.

MEC5059Z ENERGY MODELING
Not offered in 2017
20 NQF credits at HEQSF level 9
Convener: Mr A Stone; Mr F. Ahjum (Co-convenor)

Course entry requirements: Registration for the MPhil in Energy & Development Studies or for the MSc (Eng) in Sustainable Energy Engineering.

Course outline:
This course aims to deliver a practical introduction to techno-economic energy system modelling as typically undertaken for grid capacity planning or climate change mitigation action assessment. Topics include: An introduction and overview of systems thinking, and general modelling techniques, followed by a focus on energy modelling and analysis including: energy demand projections, production cost projections, energy supply planning, policy planning, climate change mitigation assessment and integrated resource planning. Linkages between energy modelling, energy statistics and scenario planning will be discussed. Examples of existing energy modelling software and modelling systems will be demonstrated and used in assignments. Important considerations in energy modelling, such as, energy-economic relationships or technology advances, will be discussed. Students will engage in exercises during the core contact period to cement some of the techniques and concepts covered and will then undertake a long assignment over the remaining course duration which will involve researching, modelling and reporting on an energy modelling application involving energy infrastructure decisions across one or more sectors.

Lecture times: Practicals: Students will undertake a practical modelling assignment based on the theoretical material covered during the contact period, pre-readings and course tutorials. The
Assignment will be based on a real-life modelling problem, and students will be required to demonstrate an understanding of the modelling process, proficiency with energy modelling techniques, and an ability to communicate the modelling process and results clearly. **Fieldwork:** None.

DP requirements: To be eligible for the examination, students will be required to attend a minimum of 80% of the lectures, and complete the pre-course tutorial work and recommended pre-readings and to participate in discussions and complete tutorial assignments given during the course. **Assessment:** Participation and tutorial exercises (5%), Assignment 1 (15%), Assignment 2: Long paper (60%), Examination (20%).

MEC5060W MASTERS DISSERTATION SUSTAINABLE ENERGY ENGINEERING
180 NQF credits at HEQSF level 9

Course outline:
In exceptional cases and on the recommendation of the supervisor, and with the approval of the Head of Department, a student registered for the Master’s degree may be permitted to enter a programme of individual study on a specialised topic, WITHOUT registering for additional course work. A research proposal must be agreed upon, and the supervisor will guide the project. The programme will involve the student in 1 440 hours of work, and a written report must be submitted, which will be examined by internal and external examiners.

DP requirements: None

MEC5061Z MASTERS DISSERTATION SUSTAINABLE ENERGY ENGINEERING
120 NQF credits at HEQSF level 9

Course entry requirements: MEC5097Z DP.

Course outline:
The purpose of the dissertation, which complements the course work that is a requirement of the degree, is to afford the student the opportunity to demonstrate his/her ability to conduct independent research. Although the student will work under the direction of a supervisor, the quality and content of the work must be a reflection of the ability of the candidate. The subject chosen for the dissertation will be by mutual agreement between supervisor and student and should incorporate elements of the course work while also being relevant to the general field of sustainable energy. Where practical, the area of research chosen should be appropriate to the student's country of origin. A dissertation towards a MSc (Eng) degree may incorporate any or all of the following: design of all or part of an engineering or built environment project to a specification involving advanced concepts and theoretical principles; a research project of a theoretical and/or practical nature on an advanced topic belonging to the Engineering sciences; critical review of a specified topic based on a comprehensive search of the literature or available data pertinent to an advanced topic belonging to the Engineering Sciences development of an item of equipment or a technique involving novel features or advanced design; and any other study acceptable to the Faculty of Engineering & the Built Environment.

DP requirements: None

MEC5063Z AN INTRODUCTION TO FINITE ELEMENTS
12 NQF credits at HEQSF level 9; 36 lectures, 12 tutorials / lab sessions.

Convener: Professor BD Reddy

Course outline:
This course is an introduction to finite elements. Topics include: weak formulations of boundary value problems, using heat conduction or diffusion as a model problem; the finite element method for one- and two-dimensional problems; coding the finite element method using Matlab; and applications to heat conduction and problems in elasticity.

DP requirements: None
Assessment: June examination

MEC5064Z FINITE ELEMENT ANALYSIS
12 NQF credits at HEQSF level 9; 36 lectures, 12 tutorials / lab sessions.
Convener: Professor BD Reddy
Course entry requirements: MEC5063Z.
Course outline:
This course aims to develop an advanced understanding of finite element analysis. Selected topics in finite element analysis include: incompressibility and mixed methods; time-dependent problems; and nonlinear problems.
DP requirements: None
Assessment: November examination.

MEC5065Z PROGRAMMING FOR SCIENTISTS AND ENGINEERS
12 NQF credits at HEQSF level 9; 36 lectures, 12 tutorials / lab sessions.
Convener: Professor BD Reddy
Course outline:
This course aims to prepare students for the development, implementation and management of engineering software for research and/or professional purposes. Such software is characterised by reliable, efficient and user-friendly programmes. Topics include: fundamentals of C++; program design and implementation; project management strategies; and algorithms and data structures. C++ will be used to demonstrate features and usage of modern object-oriented programming languages. A substantial project component is included.
DP requirements: None
Assessment: June examination

MEC5066Z CONTINUUM MECHANICS
12 NQF credits at HEQSF level 9; 36 lectures, 12 tutorials / lab sessions.
Convener: Professor BD Reddy
Course outline:
This course aims to present a general introduction to continuum mechanics. Topics include: tensors; kinematics of continuous media; balance of mass, linear and angular momentum, and energy; stress; constitutive theory; linear elasticity; ideal fluids and Newtonian fluids.
DP requirements: None
Assessment: June examination.

MEC5067Z NONLINEAR MATERIAL BEHAVIOUR
12 NQF credits at HEQSF level 9; 36 lectures, 12 tutorials.
Convener: Dr S Skatulla
Course entry requirements: MEC5066Z
Course outline:
This course aims to develop an advanced understanding of nonlinear material behaviour. Topics in nonlinear mechanics; nonlinear elasticity; behaviour of elastic-plastic solids and non-Newtonian fluids are included.
DP requirements: None
Assessment: November examination.

MEC5068Z TOPICS IN COMPUTATIONAL & APPLIED MECHANICS
12 NQF credits at HEQSF level 9
Convener: Professor BD Reddy
Course entry requirements: MEC5063Z, MEC5066Z.
Course outline:
The aim of this course is to introduce advanced computational aspects of the finite element method using the modern, open-source finite element library deal.II. The topics covered include: non-linear problems, time-dependent problems, parallelisation and adaptivity. The course is project based.
DP requirements: None
Assessment: Project.

MEC5069Z COMPUTATIONAL FLUID DYNAMICS (CFD)
12 NQF credits at HEQSF level 9
Convener: Professor AG Malan
Course entry requirements: Basic MEC4045F or postgraduate continuum mechanics course MEC5066Z
Course outline:
This course provides a postgraduate level foundation to computational fluid dynamics (CFD). It entails mastering the fundamentals of a number of aspects of modern CFD. These include edge-based discretization, incompressible and compressible flow modelling, advanced solvers, turbulence modelling and selected aspects of free-surface flow modelling. To consolidate understanding, programming assignments make out an important part of the course. You will be writing your own solver and CFD codes, which will include both incompressible and compressible flow. Due to the modern nature of the course, recent journal publications will also be used for course material.
DP requirements: None
Assessment: Assignments and Examination.

MEC5070W DISSERTATION MATERIALS ENGINEERING
180 NQF credits at HEQSF level 9
Course outline:
The dissertation should incorporate any or all of the following: design of all or part of an engineering project to a specification involving advanced concepts and theoretical principles; a research project of a theoretical or practical nature; a critical review of a specified topic based upon a comprehensive search of the literature or available data; development of an item of equipment or a technique involving novel features or advanced design; or any other study acceptable to the Faculty.
DP requirements: None
Assessment: Written work counts 100%.

MEC5071W DISSERTATION MATERIALS ENGINEERING
120 NQF credits at HEQSF level 9
Course entry requirements: MEC5097Z DP
Course outline:
The dissertation should incorporate any or all of the following: design of all or part of an engineering project to a specification involving advanced concepts and theoretical principles; a research project of a theoretical or practical nature; a critical review of a specified topic based upon a comprehensive search of the literature or available data; development of an item of equipment or a technique involving novel features or advanced design; or any other study acceptable to the Faculty.
DP requirements: None
Assessment: Written work counts 100%.

MEC5075Z NEW & RENEWABLE ENERGY TECHNOLOGIES
Not offered in 2017
20 NQF credits at HEQSF level 9
Convener: Dr A Madhlopa
Course entry requirements: Registration for the MPhil in Energy and Development Studies, the MSc (Eng) in Sustainable Energy Engineering or equivalent postgraduate programme.
Course outline:
This course aims to develop an advanced understanding of new and renewable energy technologies. Topics include: renewable energy resources, solar radiations and wind meteorology, water and biomass resource base; solar thermal, heat transfer essentials, solar water heating, passive and active solar building design; solar thermal electric, thermodynamic essentials, engine cycles; photovoltaics; wind, fluid mechanics essentials; small hydro-electric systems; alternative liquid fuels; wave, tidal, OTEC, geothermal; fuel cells, hydrogen; storage, environmental issues. The course focuses on renewable energy technologies, and within this large field, on RE technologies which have the most important present/future roles in countries like South Africa. Broader international trends will also be examined, but in less detail. More detailed engineering principles and RE system design issues will focus on major RE applications for South/Southern Africa.

Fieldwork: At least one field trip. Each student should submit a written report on the trip.

DP requirements: All assignments/reports should be completed and handed in timeously.

Assessment: Assignments/reports 20%, short class tests 20%, course examination 60%.

MEC5087Z ENERGY MARKETS & GOVERNANCE
Not offered in 2017
20 NQF credits at HEQSF level 9

Convener: Dr B Rennkamp

Course entry requirements: Registration for the MPhil in Energy and Development Studies. [Students not registered in the ERC, may not register for this course].

Course outline:
This course aims to develop an advanced understanding of energy markets and governance. Topics include: National and international energy policy and markets (oil, gas, and electricity), their structure, dynamics and implications for national planning. Energy governance, the role of the state and management of the energy sector: market failure; regulatory theory; monopolies; institutional reform; and energy pricing theory and methods.

DP requirements: Attendance at lectures and seminars and submission of all assignments.

Assessment: Examination 20%, weekly assignments 30%, long paper 50%.

MEC5088Z ENERGY, POVERTY & DEVELOPMENT
Not offered in 2017
20 NQF credits at HEQSF level 9

Convener: Ms L Tait

Course entry requirements: Registration for either/or both MPhil in Energy and Development Studies and MSc Sustainable Energy Engineering

Course outline:
This course introduces students to the topic of access to energy services for the poor. It aims to give the student an overall understanding of the role that modern energy services play in human and economic development. It will also cover appropriate policy and programme responses to supplying energy services. Finally the course aims to give students an understanding of social science research methods appropriate to conducting primary research in this field. There will also be site visits to gain a better understanding of the practical implications and social context for the implementation of energy access projects.

Lecture times: Fieldwork: There will be a site visit to a low-cost housing site with solar water heaters and other energy interventions.

DP requirements: Lecture attendance, completion of all assignments.

Assessment: Short assignments, presentations and a final long paper.
MEC5089Z ENERGY PROJECT
20 NQF credits at HEQSF level 9
Convener: Professor H Winkler
Course outline:
On the recommendation of the supervisor, and with the approval of the Director of the Energy Research Centre, a student registered for a Master’s degree may be permitted to enter a programme of individual study on a specialised topic. A research proposal must be agreed upon, and the project will be guided by the supervisor. The programme will involve the student in 200 hours of work, and a written report must be submitted which will be examined by an internal and external examiner.
DP requirements: None
Assessment: Project(s) 100%.

MEC5090Z ENERGY & CLIMATE CHANGE
Not offered in 2017
20 NQF credits at HEQSF level 9
Convener: Dr D Sparks
Course entry requirements: Registration for either/or both MPhil in Energy and Development Studies and MSc Sustainable Energy Engineering or at the discretion of the convenor.
Course outline:
This course aims to develop an advanced understanding of energy and climate change. Topics include: Causes of climate change: greenhouse effects, carbon cycle, current status and climate variability. Future changes and impacts of climate change: emissions and concentrations, stabilisation prospects, temperature effects, ecological and socio-economic impacts. Energy development and use and climate change: GHG emissions from energy supply and use, non-GHG emissions from energy supply and use. Climate change debate and Assessment: Agenda 21, UNFCCC, Kyoto Protocol, obligations and commitments of countries, IPCC reports. Energy options for mitigation of climate change: supply, building, transport, industry erosion, waste management, and human health. Energy technology transfer: transfer trends, transfer strategies. Sustainable policies and measures: domestic, international, UNFCCC and KP instruments.
DP requirements: Attendance at lectures and seminars and submission of all assignments/tests and long paper.
Assessment: Project, examination.

MEC5091Z INTRODUCTION TO ENERGY POLICY & SUSTAINABLE ENERGY ENGINEERING
Not offered in 2017
20 NQF credits at HEQSF level 9
Convener: Professor H Winkler
Course entry requirements: Registration for the MPhil in Energy & Development Studies or the MSc (Eng) in Sustainable Energy Engineering, or at the discretion of the convenor.
Course outline:
This course aims to develop an advanced understanding of energy policy and sustainable energy engineering. Topics include: Introduction to energy concepts and terminology. Energy resources and reserves, extraction methods and conversion techniques, including coal, gas, liquid fuels, hydro nuclear, renewable energy electricity. An overview of the current world-wide energy situation. Energy demand and energy balances. Energy issues related to development, sustainability and conservation with environmental and economic linkages. Integrated resource planning and integrated energy planning. Introduction to policy science and theory; and South African and international energy policy issues.
DP requirements: Attendance at lectures and seminars and submission of all assignments.
Assessment: 70% coursework (50% long paper, 20% class assignments), 30% examination.
MEC5092W DISSERTATION ENERGY & DEVELOPMENT STUDIES
120 NQF credits at HEQSF level 9
Course entry requirements: MEC5097Z.
Course outline:
The purpose of the dissertation, which complements the course work that is a requirement of the degree, is to afford the student the opportunity to demonstrate his/her ability to conduct independent research. Although the student will work under the direction of a supervisor, the quality and content of the work must be a reflection of the ability of the candidate. The subject chosen for the dissertation will be by mutual agreement between supervisor and student and should incorporate elements of the course work while also being relevant to the general field of sustainable energy or energy and development.
A dissertation towards a MPhil degree may incorporate any or all of the following: design of all or part of an engineering or built environment project to a specification involving advanced concepts and theoretical principles; a theoretical and/or practical research project of an inter-disciplinary nature; critical review of a specified topic based on a comprehensive search of the literature or available data of an interdisciplinary nature; and any other study acceptable to the Faculty of Engineering & the Built Environment.
DP requirements: None
Assessment: Written work counts 100%.

MEC5093W DISSERTATION ENERGY AND DEVELOPMENT STUDIES
180 NQF credits at HEQSF level 9
Course outline:
In exceptional cases and on the recommendation of the supervisor, and with the approval of the Head of Department, a student registered for the Master’s degree may be permitted to enter a programme of individual study on a specialised topic, WITHOUT registering for additional course work. A research proposal must be agreed upon, and the supervisor will guide the project. The programme will involve the student in 1 440 hours of work, and a written report must be submitted, which will be examined by internal and external examiners. A dissertation towards a MPhil degree may incorporate any or all of the following: design of all or part of an engineering or built environment project to a specification involving advanced concepts and theoretical principles; a theoretical and/or practical research project of an inter-disciplinary nature; critical review of a specified topic based on a comprehensive search of the literature or available data of an interdisciplinary nature; and any other study acceptable to the Faculty of Engineering & the Built Environment.
DP requirements: None
Assessment: Written work counts 100%.

MEC5095Z MINOR DISSERTATION ENGINEERING MANAGEMENT
60 NQF credits at HEQSF level 9
Convener: Dr C Shaw
Course entry requirements: Completion of appropriate postgraduate courses.
Course outline:
In agreement with a suitable supervisor, a research topic will be selected, a research proposal agreed, research will be undertaken and a research report prepared. This will represent at least 600 hours of work.
DP requirements: None
Assessment: The written report will be examined, and a further oral examination may be held.
MEC5097Z DISSERTATION PREPARATION
0 NQF credits at HEQSF level 9
Course outline:
The aim of this course is to allow a student to undertake preparatory work for the master’s
dissertation. Work required includes literature searches and reviews; identification of the research
problem, objectives and hypothesis; consideration of research methodology; planning for the active
research phase; and ensuring that research infrastructure (e.g. apparatus etc.) is or will be in place.
The student should maintain regular contact with his/her supervisor in order to show evidence of
suitable progress towards these aims. The supervisor must indicate satisfactory fulfilment of the
course aims prior to the student proceeding to the dissertation.
DP requirements: None

MEC6000W THESIS MECHANICAL ENGINEERING
360 NQF credits at HEQSF level 10
Course outline:
A PhD thesis is required to be an original, coherent and consistent body of work which reflects the
candidate’s own efforts. The thesis may not be more than 80 000 words. A candidate will undertake
research, and such advanced coursework as may be required, under the guidance of a supervisor or
supervisors appointed by Senate.
DP requirements: None
Assessment: Written work counts 100%.

MEC6002W THESIS ENGINEERING MANAGEMENT
360 NQF credits at HEQSF level 10
Course outline:
A PhD thesis is required to be an original, coherent and consistent body of work which reflects the
candidate’s own efforts. The thesis may not be more than 80 000 words. A candidate will undertake
research, and such advanced coursework as may be required, under the guidance of a supervisor or
supervisors appointed by Senate.
DP requirements: None
Assessment: Written work counts 100%.

MEC6003W THESIS SUSTAINABLE ENERGY ENGINEERING
360 NQF credits at HEQSF level 10
Course outline:
A PhD thesis is required to be an original, coherent and consistent body of work which reflects the
candidate’s own efforts. The thesis may not be more than 80 000 words. A candidate will undertake
research, and such advanced coursework as may be required, under the guidance of a supervisor or
supervisors appointed by Senate.
DP requirements: None
Assessment: Written work counts 100%.

MEC6004W THESIS MATERIALS ENGINEERING
360 NQF credits at HEQSF level 10
Course outline:
A PhD thesis is required to be an original, coherent and consistent body of work which reflects the
candidate’s own efforts. The thesis may not be more than 80 000 words. A candidate will undertake
research, and such advanced coursework as may be required, under the guidance of a supervisor or
supervisors appointed by Senate.
DP requirements: None
Assessment: Written work counts 100%.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC6005W</td>
<td>THESIS ENERGY AND DEVELOPMENT STUDIES</td>
<td>360</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Course outline:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A PhD thesis is required to be an original,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>coherent and consistent body of work which</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>reflects the candidate’s own efforts. The</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>thesis may not be more than 80 000 words. A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>candidate will undertake research, and such</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>advanced coursework as may be required, under</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the guidance of a supervisor or supervisors</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>appointed by Senate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DP requirements:</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment:</td>
<td>Written</td>
<td></td>
</tr>
<tr>
<td></td>
<td>work counts 100%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEC6006W</td>
<td>THESIS ENGINEERING EDUCATION</td>
<td>360</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Course outline:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A PhD thesis is required to be an original,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>coherent and consistent body of work which</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>reflects the candidate’s own efforts. The</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>thesis may not be more than 80 000 words. A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>candidate will undertake research, and such</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>advanced coursework as may be required, under</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the guidance of a supervisor or supervisors</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>appointed by Senate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DP requirements:</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment:</td>
<td>Written</td>
<td></td>
</tr>
<tr>
<td></td>
<td>work counts 100%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>END5050X</td>
<td>MASTERS JOURNAL PAPER REQUIREMENT</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Course outline:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The aim of submitting a research paper for the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>masters’ degree is to develop an understanding</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of what is required for the publication of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>research findings. To this end a candidate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>shall submit a summary of the key aspects of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the dissertation, presented in the form of a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>paper which is, potentially, of publishable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>standard, approved by a Panel of Assessors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This is a requirement for candidates submitting</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>either a 180 or 120 credit dissertation for the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>following degrees: MSc in Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Economics and Management, MSc(Eng), MSc(ProjMan)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MPil, MSc in Property Studies. Refer to the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>appropriate degree rules.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DP requirements:</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DEPARTMENTS IN OTHER FACULTIES AND COURSES OFFERED

Departments Established in the Faculty of Commerce

COLLEGE OF ACCOUNTING

Associate Professor and Head of Department:
M Graham, BBusSc MCom Cape Town CA(SA) ACMA

ACC2022F/S MANAGEMENT ACCOUNTING I
18 NQF credits at HEQSF level 6
Convener: J Dean
Course entry requirements: ACC1006F/S or approved equivalent.
Course outline:
An introduction to the discipline of Management Accounting; the analysis of cost systems, cost classification and cost behaviour; product costing including job costing and process costing; the allocation of costs from service departments; absorption and variable costing; activity based costing; cost-volume-profit relationships; relevant costing and cost benefit analyses; budgeting systems; standard costing and flexible budgeting.
DP requirements: Attendance at and submission of a minimum of 75% of tutorials AND a weighted average of 40% for class tests (excluding objective tests).
Assessment: Course work 40% final examination 3 hours 60%.

Centres and Departments Established in the Faculty of Humanities

SCHOOL OF AFRICAN & GENDER STUDIES, ANTHROPOLOGY & LINGUISTICS

The sections in the School share a commitment to research and teaching responsive to African political, social, cultural, and material contexts, and the interaction of those contexts with others, especially but not exclusively located in the global South. The intellectual interests of the proposed new School cohere around questions relating to the production of social, political, cultural, scientific and economic knowledge within the continent of Africa, as a platform for internationally relevant research.

The letter code for all courses offered in the School is AXL.
Departmental website: www.humanities.uct.ac.za/hum/departments/axl.

The School comprises the following Sections:

AFRICAN STUDIES
ANTHROPOLOGY
GENDER STUDIES
LINGUISTICS
DEPARTMENTS IN OTHER FACULTIES AND COURSES OFFERED

Associate Professor and acting Director of the School:
H O Garuba, MA PhD *Ibadan*

AFRICAN STUDIES SECTION
The African Studies Section is housed in the Harry Oppenheimer Institute Building, Engineering Mall, Upper Campus, and can be contacted by email at: cas-africas@uct.ac.za, or telephone: 021 650 4034.

Associate Professor and Head of Section:
H Chitonge, MA PhD *KZN*

ANTHROPOLOGY SECTION
The Anthropology Section is housed in the AC Jordan Building, University Avenue, Upper Campus, and can be contacted by email at: san-admin@uct.ac.za, or telephone: 021 650 3678.

Professor and Head of Section
F C Ross, A W Mellon Chair in the Anthropology of the First 1000 Days of Life, MSocSc PhD *Cape Town*

GENDER STUDIES SECTION
The Gender Studies Section is housed in Harry Oppenheimer Institute Building, Engineering Mall, Upper Campus, and can be contacted by email at: genderstudies@uct.ac.za or telephone: 021 650 2970.

Associate Professor and Head of Section:
J Bennett, BA(Hons) *Natal MA (Linguistics) EdD (Applied Linguistics) Columbia*

LINGUISTICS SECTION
The Linguistics Section is housed in the AC Jordan Building, University Avenue, Upper Campus, and can be contacted by email at: axl-linguistics@uct.ac.za, or telephone: 021 650 2847.

Professor and Head of Section
A Deumert, MA *Freiburg PhD Cape Town*

AXL4202F RACE, CULTURE & IDENTITY IN AFRICA
24 NQF credits at HEQSF level 8
Convener: Associate Professor N Shepherd

Course entry requirements: Acceptance for an Honours or Master’s programme.

Course outline:
The course is designed specifically with students, who are non-African Studies specialists in mind, such as international students, or students from Faculties, such as Engineering & the Built Environment, Health Sciences, Science or Commerce. The mix of students, local and international as well as from a variety of disciplines, makes the interaction on the course an enriching experience. The course will address some of the major contemporary issues facing South Africa and the continent and will confront some of the stereotypes and misrepresentations of the culture and history of Africa. Taught with the aim of empowering aspirant professionals as they embark on careers, students will be provided with readings especially chosen for non-specialists and accompanied by an assignment at each seminar. Assignments can be chosen by students according to their interest and will only have to be handed in twice during the course, or if students choose to hand in more, their best two will count.

The course is taught using exciting multimedia resources; web-based material; film, books and journal articles, fiction and commentary; poetry, political writing; and site visits.

Assessment: Two essays (25% each): 50%; one exam: 50%.

NOTE: Attendance at seminars is compulsory; failing which students’ papers may not be marked.
AXL5203S CRITICAL ISSUES IN HERITAGE STUDIES
24 NQF credits at HEQSF level 9
Convener: Associate Professor N Shepherd
Course entry requirements: Acceptance for an Honours or Master’s programme.
Course outline:
In this course we examine a set of critical issues in the field of heritage studies, as they are currently unfolding. We take a case study approach to look at currently breaking issues in heritage theory, policy and practice. In particular, we are interested in those points at which heritage forms a cutting edge in broader contestations around culture, identity and history. In addition, as a way of making sense of heritage management discourses, we examine some of the intellectual histories and genealogies of formulations of heritage in South Africa.
DP requirements: Attendance at seminars is compulsory, failing which students’ papers may not be marked.
Assessment: One major project 100%.

Departments Established in the Faculty of Law

COMMERCIAL LAW
Professor and Head of Department:
R le Roux, BJuris LLB UPE LLM Stell PG Dip (Employment Law and Social Security Law) Cape Town LLM Anglia Polytechnic PhD Cape Town Attorney and Conveyancer of the High Court

PBL5045S ENVIRONMENTAL LAW FOR NON-LAWYERS
(not offered in 2017)
15 NQF credits at HEQSF level 9
Convener: Professor A Paterson
Course entry requirements: Successful completion of any undergraduate degree. Not available to students undertaking an LLB or LLM degree.
Course outline:
The inclusion of an environmental right in South Africa's Constitution has led to the emergence of many environmental laws and court decisions in the past 15 years. These developments are of key relevance to those working in the environmental sector including developers, consultants, biologists, zoologists, planners, sociologists and anthropologists. This course provides students undertaking postgraduate studies relevant to the environment with an insight into relevant principles of international and domestic environmental law. Key content covered in the course includes: an introduction to basic legal principles and resources; constitutional aspects (environmental rights, access to information, administrative justice and access to courts); framework environmental laws; land-use planning laws (planning law, environmental impact assessment and protected areas); natural resource laws (biodiversity, water and marine living resources); and pollution laws (fresh water, land and air pollution).
Lecture times: 1 x 3 hour lecture per week.
DP requirements: Satisfactory attendance of lectures and completion of essay.
Assessment: Short Assignment (10%); Long Assignment (40%); Written Examination (50%)

PBL5046S CLIMATE, LAW AND GOVERNANCE
(*not offered in 2017*)
15 NQF credits at HEQSF level 9
Convener: Professor Jan Glazewski
Course entry requirements: Successful completion of any undergraduate degree. Not available to students undertaking an LLB or LLM degree.
Course outline: The phenomenon of climate change poses major challenges to the international community of nations, the African continent, and the South African body politic. Meeting these challenges requires among other things an inter-disciplinary approach and finding interconnectedness between the natural and social sciences. This course will provide postgraduate students with an insight into principles of international law, regional law and South African national law of relevance to climate change. Key content covered in the course includes: an introduction to basic international and domestic legal principles and institutions; environmental governance systems and theories; and an introduction to various branches of the law relevant to climate change such as energy law, planning and environmental impact assessment law; natural resource law (biodiversity, protected areas, water and marine living resources), pollution laws (marine, fresh water, land and air pollution) and fiscal law (in the context of climate financing).
Lecture times: One double lecture per week.
DP requirements: Satisfactory attendance of lectures and completion of a series of assignments.
Assessment: Assignments (50%); written examination (50%).
African Centre for Cities

The African Centre for Cities (ACC) was established in 2007 as a UCT signature research theme cutting across three Faculties (Engineering & the Built Environment, Science and Humanities). The mission of ACC is to facilitate critical urban research and policy discourse for the promotion of vibrant, democratic and sustainable urban development in the global South. ACC researchers undertake research and policy work on a wide range of urban issues in Cape Town, South Africa, Africa and the global South, and collaborate with a number of other institutions across the globe (for example, as part of the Mistra Urban Futures network). Over the past decade, ACC has established an impressive international profile and reputation as a dynamic home for analysis of urban issues and policies. ACC is also in the process of developing a new urban studies teaching programme to help build a new generation of urbanists who are able to deal with the challenges of cities in the global South.

Professor and Director:
E Pieterse, BA(Hons) UWC MA Development Studies ISS PhD LSE

Research and Academic Staff:
J Battersby-Lennard, BSc(Hons) London MA Newcastle-upon-Tyne DPhil Oxford
M Brown-Luthango, BSc(Hons) MSocSc Cape Town DPhil Stellenbosch
L Cirolia, BA UC Berkeley MCRP Cape Town
J Duminy, BSc Rhodes MTRP UKZN MA Leicester
H Ernstson, BSc Jönköping MSc Linköping PhD Stockholm
G Haysom, MPhil Stellenbosch PhD Cape Town
N Marrengane, BA Earlham MA Clark Atlanta
S Oldfield, BA(Hons) MA Syracuse PhD Minnesota
L Sibanda, BSc MPhil Cape Town
R Sitas, BA Cape Town BA(Hons) UKZN MA DUT PhD Cape Town
C Skinner, BSocSci Cape Town MSc Natal
W Smit, BSc MCRP PhD Cape Town

Finance and Operations Manager:
I Najaar, BCom UWC

Administrative Officer:
M Joubert

Administrative Assistants:
M Waglay, BSocSc (Hons) Cape Town

Blast Impact & Survivability Research Unit (BISRU)

There is an ever-increasing potential for injuries and fatalities from extreme loading events such as explosions, transportation accidents and subsequent equipment failures. The objective of the research work during the past 25 years has been, and continues to be, to strive to reduce the risks of
life-changing injuries and save lives by using the fundamental principles of science and engineering. This involves using experimental, analytical and computational tools and techniques to understand the mechanics and dynamics of extreme loading events and structural response. BISRU is located within the Department of Mechanical Engineering and has developed collaborative links with industry and academia at both national and international levels. The research work, though interconnected, is categorised into the following areas:

• Blast Characterisation
• Material Characterisation
• Novel Materials
• Structural Response & Scaling
• Buried explosions
• Energy Absorbers
• Human Response and Biomechanics
• Sporting Equipment

Professor and Director:
GS Langdon, BEng PhD Liverpool MIMechE CEng

Honorary Professor:
D Karagiozova, PhD Ukrainian Academy of Science

Associated Academic Staff:
S Chung Kim Yuen, BSc(Eng) MSc PhD Cape Town
TJ Cloete, BIng Stell MIng Stell
R Govender, BSc(Eng) MSc(Eng) PhD Cape Town
GS Langdon, BEng PhD Liverpool MIMechE CEng
GN Nurick, PrEng MSc(Eng) Natal PhD Cape Town Hon FSAIMechE MASME FSAAE

Website: www.bisru.uct.ac.za

Catalysis Institute
The Catalysis Institute, proclaimed by the University Research Committee in 2016, concerns itself with catalytic technologies, principally for fuels and energy production, and is comprised of three centres, viz. the Centre for Catalysis Research (CatCentre), the DST – NRF Centre of Excellence in Catalysis (e*change) and the DST Hydrogen Catalysis Competence Centre (HySA/Catalysis) - see elsewhere for detailed entries concerning the associated centres.

The Institute's beginnings stem from a long history in heterogeneous catalysis within the Department of Chemical Engineering and dating back to 1980. Currently, the activities of some 30 staff and 30 – 45 postgraduate/postdoctoral researchers fall within the ambit of the Institute at UCT, ranging from theoretical computational studies, catalyst synthesis & characterisation, to device (reactor) and technology development across a range of applications from liquid transportation fuels and petrochemicals to hydrogen production and low temperature fuel cells.

It is governed by a Management Committee comprising the Directors and Deputy Directors of the associated Centres and enjoys the services of an extensive Advisory Board representing Academia, Government and Industry.

Professor and Director of the Institute:
JCQ Fletcher, BSc(Eng)Chem PhD Cape Town MACS FSAAE

Associated Academic Staff:
S Blair, PhD Materials Chemistry Simon Fraser University (Canada)
Management Staff
LK. Kallam, BCom (IS) Unisa
SJ Roberts, BSc (Eng) Chem MSc (Eng) Chem Cape Town
RW Weber, BSc (Eng) MSc (Eng) PhD MBA Cape Town

Administrative Officers:
Helene (Leigh) Hendricks, Shireen Heugh

Catalysis Institute: Centre for Catalysis Research (Cat Centre)
Industrial catalysis research was initiated in the Department of Chemical Engineering in 1980 and was formally recognised as a Research Unit (1990) and subsequently as a Research Centre (2005) by the University. Funding comes from a variety of sources including the University, the National Research Foundation (NRF), Technology & Human Resources for Industry Programme (THRIP), and several industrial sponsors. Industrial contract research from both domestic and international companies contributes substantially to the Centre's financial base.

The Centre concerns itself with both fundamental and industrial research and development in the general field of heterogeneous catalysis, encompassing all of catalyst synthesis, physico-chemical characterisation and performance testing for industrially interesting chemical conversions. Although engaged in topics of international interest, the Centre has a strong commitment to addressing issues of direct importance to the South African Chemical Process Industry.

The main fields of investigation within the Centre cover Fischer-Tropsch synthesis, zeolites and molecular sieves, hydrocracking, phenolics conversion, and hydrogen and fuel cell technologies. The Centre offers a MSc(Eng) degree involving coursework, and research degrees at PhD level.

Deputy and Acting Director:
SJ Roberts, BSc (Eng) Chem MSc (Eng) Chem Cape Town

Catalysis Institute: DST - NRF Centre of Excellence in Catalysis (c*change)
The DST-NRF Centre of Excellence in Catalysis (c*change), established in 2004 and hosted by the Centre for Catalysis Research in the Department of Chemical Engineering, has as its focus the field of catalysis and catalytic processing, and is to be seen as a large yet focused virtual research programme of a national scope and significance, with multi-disciplinary participants from ten higher education institutions. It is fundamentally about directed research themes conducted by national teams to support the nation's international competitiveness. In South Africa, the principal application of catalysts is within the chemical and petrochemical industries, where catalysis lies at the heart of 90% of all chemical transformation processes. With the manufacturing sector being the largest
contributor to national GDP and with chemical manufacturing being the largest single contributor to
the South African manufacturing sector, chemical processing and catalysis are recognized as a
distinct field for targeted initiatives as emphasized in the National Research and Development
Strategy.

Professor and Director:
M Claeys, Dipl.Ing Dr-Ing (Chem Eng) "Karlsruhe"

Catalysis Institute: DST Hydrogen Catalysis Competence Centre (HySA/ Catalysis)
The Centre for Catalysis Research, together with Mintek, hosts the Department of Science and
Technology's (DST) Hydrogen Catalysis Competence Centre. This Centre, established in 2007, is
one of three Competence Centres that develop hydrogen-based technologies as part of the National
Flagship Project in Hydrogen and Fuel Cell Technologies. Platinum-group metals are key catalytic
materials in hydrogen fuel cells and South Africa has the unique driver in that it possesses 75% of
the world's platinum reserves. The strategic goal is for South Africa to supply 25% of the future
global fuel-cell market with novel, locally developed and fabricated platinum-group metal catalysts
by 2020, thereby diversifying the applications of the nation's platinum group metal resources.

Director:
S Blair, PhD Materials Chemistry "Simon Fraser University (Canada)"

Centre for Bioprocess Engineering Research (CeBER)
CeBER was formally constituted as a Unit in 2001 and upgraded to a Centre in 2008 cementing a
long history of bioprocess engineering research at UCT. It aims to underpin the growth and
exploitation of the biotechnology, chemical and minerals sectors in South Africa through a national
centre of expertise in bioprocess engineering. As such, the Centre has the following objectives:

- the education of engineers and scientists to the postgraduate level with key expertise to
 excel in careers in the bioprocess arena, both in research and in the industry,
- the provision of research expertise in key aspects of bioprocess engineering relevant to
 South Africa through contract research,
- the contribution to fundamental insights in bioprocess engineering and related processes,
 and
- the transfer and application of knowledge across disciplines in which bioprocesses play a
 role, contributing to the South African bioeconomy and process industries.

CeBER maintains a productive balance between research centred on the application of biological
principles through process development, on the fundamental understanding of biological processes
at the mechanistic level and on the interaction of these processes with their environment. Our key
foci include biophydrometallurgy for the extraction of metals in tank and heap bioleaching processes,
ARD prevention and remediation of metal rich effluents, fine chemicals through bacterial and fungal
processes, algal biotechnology for bioenergy products, commodities and fine chemicals,
biotransformation for value addition, biorefineries including the wastewater biorefinery, product
liberation and recovery, bioprocess integration and optimisation through modelling, design and
development of bioprocesses for environmental sustainability. In addressing these research areas,
the Centre brings together key skills in chemical engineering science, mathematical modelling,
hydrometallurgy, environmental engineering, biochemistry, microbiology and molecular biology.
CeBER hosts the DST/NRF SARChI Research Chair in Bioprocess Engineering.

Professor and Director:
STL Harrison, BSc(Hons) "Cape Town PhD Cantab MSAIChe FSAMM SASM FSAAE ASSAf"

Associated Academic and Research Staff:
MA Fagan-Endres, BSc (Eng) Chem Cape Town PhD Cambridge
E Govender, BSc(Eng) Chem PhD Cape Town
R Huddy, BSc(Hons) PhD Cape Town
M Johnstone-Robertson, BSc(Eng) Chem PhD Cape Town
A Kotsiopoulos, BSc(Eng) PhD Cape Town
S Tai, BSc(Hons) UMIST MSc(Biochemical Engineering) PhD(Industrial Microbiology) TU Delft

Technical Staff:
TM Goleka, NDip BTech Cape Peninsula
E Ngoma, BTech TUT
S Rademeyer, NDip BTech(Chem Eng) CPUT
T Samkanga, NITC NTC NHD Harare Polytechnic MBA Rhodes

Postdoctoral Researchers:
JR Amaral Filho, BSc(Eng) Environmental PhD Rio Grande do Sul - Brazil
PP Diale, BSc (Eng) Chem Johannesburg PhD Wits
SMJ Jones, BSc(Hons) MSc Rhodes PhD Cape Town
M Smart, BSc (Hons) MSc Stellenbosch PhD Cape Town

Research Associates:
C Bryan, BSc(Hons) Nottingham PhD Bangor
MJ Griffiths, BSc (Hons) Cape Town MPhil Cambridge PhD Cape Town
RP van Hille, BSc (Hons) PhD Rhodes

Administrative Staff:
SH Jobson, BA Rhodes HDE Cape Town
C Mazzolini, BA Print Journalism Cape Town
LD Mostert, BSc(Eng) Chem Cape Town

Website: www.ceber.uct.ac.za

Centre for Materials Engineering (CME)
The Centre has the objectives of educating and training students in the techniques and fundamentals in the broad field of Materials Engineering. We are concerned with the physical, chemical, electrical and mechanical properties of ceramic, polymeric, metallic and composite materials. The Centre is supported by the NRF, DST and materials processing, producing, manufacturing and user industries and undertakes extensive research programmes, which prepare candidates for the degrees of MSc(Eng) in Materials Engineering and PhD. Of particular significance is the BSc(Hons) in Materials Science that is specifically designed for graduates with degrees in Physics, Chemistry or Geology and related sciences. We promote quality research by maintaining international liaisons and publication in reputable journals. The Centre also aims to support and assist both large and developing industries through research projects, practical solutions and human resource development.

Professor and Director:
RD Knutsen, BSc PhD Cape Town

Associated Academic Staff:
SL George, BSc(Eng) MSc(Eng) PhD Cape Town

Visiting Lecturers:
T Becker, BSc(Eng) MSc(Eng) PhD Cape Town
M Topic, BSc Belgrade PhD Cape Town
CD Woolard, BSc (Hons) PhD Cape Town MSc London
Emeritus Professor:
RB Tait, PrEng BSc(Hons) Rhodes MA Oxon BSc(Eng) PhD Cape Town MSAIMechE

Senior Technical Officers:
P Park-Ross, BSc(Hons) Cape Town

Research Assistant
S von Willingh, BSc (Hons) MSc (Eng) Cape Town

Part time Senior Technical Officer
RJ Curry, BSc(Eng) MSc(Eng) Cape Town

Secretary
I Ntshwanti

Centre for Minerals Research (CMR)
The Centre for Minerals Research at the University of Cape Town is a multi-disciplinary, inter-
departmental research centre based in the Department of Chemical Engineering with close associate
activities in Mechanical Engineering; geology and physics. The main focus of research is on the
processes of froth flotation and comminution, arguably two of the most important unit operations in
mineral beneficiation. Research is conducted through industrial, laboratory and computational
studies. The Centre enjoys extensive support from local and international mining companies as well
as statutory funding agencies. The Centre has an excellent reputation in its field and has strong links
with a number of international research institutes. The Centre is a research partner in a highly
successful collaborative venture with the Julius Kruttschnitt Mineral Research Centre, University of
Queensland.

Professor and Director:
DA Deglon, BSc(Eng) Wits MBA PhD Cape Town MSAIMM

Associated Academic and Research Staff:
L Bbosa, MSc Cape Town
M Becker, MSc Cape Town PhD Pret
P Bepswa, BSc(Eng) Cape Town
K Corin, MSc Phd, Cape Town
I Govender, BSc UDW HDE UNISA BSc(Hons) PhD Cape Town
MC Harris, MSc(Eng) Cape Town
A Mabentsela, BSc (Hons) Cape Town
A Mainza, BSc(Eng) UNZA PhD Cape Town
B McFadzean, MSc PhD NMMU
CT O’Connor, PrEng BSc Unisa STD Natal BSc(Hons) PhD Cape Town DEng Stell FSAIMM
FSAIChe FSAAE FRSSAf
T Rampai, BSc(Hons) MSc(Eng) Cape Town
A van der Westhuizen, BIng Stell MSc(Eng) Cape Town MSAIMM
J Waters, BTech Cape Technikon
JG Wiese, MSc Cape Town

Honorary Adjunct Professors:
P Dempsey, BSc UNISA
S Lambert, BSc(Eng) BSc(Hons) Strathclyde
J Mann, BSc(Eng) Wits MBL UNISA

Administrative Staff:
H Sundström
Centres and Other Entities Established in the Faculty

N Davies
C Pomario

Centre for Research in Computational & Applied Mechanics (CERECAM)
The Centre for Research in Computational and Applied Mechanics (CERECAM) is a multi-faculty and inter-disciplinary research grouping which concerns itself with basic and applied research and postgraduate education in computational and applied mechanics. Its members are drawn from chemical, civil, mechanical engineering, applied mathematics, and health sciences. Research in the area of solid and structural mechanics focuses on modelling and simulation of inelastic material behaviour and of various structural systems, fracture mechanics and fatigue, while work in computational fluid and particulate dynamics includes activities in industrial aerodynamics, simulations of flotation and precipitation processes, milling and comminution processes, and various aspects of non-Newtonian flows. Work in biomechanics straddles the two broad areas of solid and fluid mechanics.

Professor and Director:
BD Reddy, OMB BSc(Eng) Cape Town PhD Cantab FRSSAf FSAAE MASSAf

Members:
T Chinyoka, MSc Zimbabwe PhD Virginia Tech
DA Deglon, BSc(Eng) Wits MBA PhD Cape Town MSAIMM
F Ebobisse Bille, BSc(Hons) Yaounde’l Cameroon PhD Pisa
S Skatulla, Dipl Ing Karlsruhe PhD Adelaide
A Mainza, BSc(Eng)Chem UNZA PhD Cape Town
M Ngoepe, BSc(Eng) Cape Town PhD Oxon

Associate members:
TJ Cloete, MIng Stell
EB Ismail, BSc(Eng) MSc(Eng) Cape Town
JE van Zyl, PrEng, BEng MEng RAU PhD Exeter MSAICE MASCE FWISA

Research Officer:
Vacant

Administrative Assistant:
N Bent

Website: www.cerecam.uct.ac.za

Centre for Research in Engineering Education (CREE)
CREE was founded in 1996 with the aim of establishing and promoting engineering education as a viable research field at UCT and in the broader academic community. In the sixteen years since then, considerable progress has been made towards meeting this objective and the research area is now well established at UCT, as evidenced in peer-reviewed research output, as well as the number of CREE researchers who are working towards postgraduate qualifications in this area. CREE also has a strong national profile which is sustained through its own publications and involvement in co-hosting national conferences on engineering education. A key development over this time has been the growth of CREE to incorporate what is now a sizable proportion of researchers working in the science disciplines. This has been a very natural and logical progression, and has emerged from shared concerns, contextual features and research methodologies. The 'home' of CREE remains in the Faculty of Engineering and the Built Environment, and half of the members of the management team are located in this faculty.

Director:
TS Craig, PhD Cape Town

Associated Academic Staff:
BJ Collier-Reed, Pr Eng MSc(Eng) PhD Cape Town MSAIMechE
AE Deacon, MSc Stell
B Kloot, BSc(Eng) Wits MSc(Eng) PhD Cape Town
K le Roux, BA(Hons) Natal HDEMPHil Cape Town PhD Witwatersrand
CB Shaw, BSc(Eng) MSc(Eng) HDE MPhil(EngMan) PhD Cape Town
DL Taylor, BSc Hons HDE UKZN MSc PhD Wits
N Wolmarans, BSc(Eng) MSc(Eng) PGDipEd(HES) Cape Town

Administrative Staff:
D Chuter, BA HDE Cape Town

Centre for Transport Studies
The Centre for Transport Studies is a multidisciplinary research and postgraduate teaching body. The Centre's primary aim is to develop into an internationally recognised research and teaching body that produces relevant research, develops skilled professionals, and advocates innovative practices and institutional arrangements for the management of complex transport systems in the dynamic cities of South Africa and other African countries.

The purpose of the Centre is to stimulate debate and undertake research that focuses on the equity, sustainability and efficiency problems associated with urban passenger transport systems in South African cities, and on the development of practices and skills that are consistent with the goals and objectives of contemporary and progressive policies. The Centre’s priorities in curriculum development, and in undertaking research, are to contribute to the equitable, efficient and safe accommodation of the travel needs of poorer households within urban passenger transport systems, and to the promotion of more efficient and sustainable travel behaviour patterns and transport system operations.

Associate Professor and Director:
R Behrens, Pr Pln BA MCRP PhD Cape Town

Associated Academic Staff:
M Vanderschuren, BSc(Eng) Tilburg MSc(Eng) Delft PhD Enschede MSAICE MITSSA
M Zuidgeest, MSc PhD Twente

Research Officer:
H Schalekamp, BAS BArch MPhil PhD Cape Town

Website: www.cfts.uct.ac.za

Concrete Materials and Structural Integrity Research Unit (CoMSIRU)
The Concrete Materials and Structural Integrity Research Unit (CoMSIRU) became an accredited UCT Research Unit in 2010. The unit’s research is focused on quality, durability and sustainability of concrete construction, structural health monitoring, structural integrity assessment, and repair & rehabilitation strategies for concrete structures. The guiding principle for CoMSIRU is developing high-level manpower for industry, research and academia, while engaging in innovative and impactful research. The unit maintains healthy and active links with industry through an advisory board, involvement in professional bodies and continuing professional development courses, as well as postgraduate training. CoMSIRU’s well-established international links provide opportunities for collaborative research and benchmarking, which enables the research unit to continuously evolve and strengthen its niche research focus. The Research Programme is closely integrated with the
postgraduate teaching programmes in Civil Infrastructure Management and Maintenance and Structural Engineering and Materials in the Department of Civil Engineering.

Professor and Director:
P Moyo, Pr Eng BSc(Eng) *Zimbabwe* MSc(Eng) *Newcastle-upon-Tyne* PhD *Nanyang* MISAICE MIABSE MISHMII

Professor and Co-Director:
H Beushausen, Dipl-Ing HAW *Hamburg* MSc(Eng) PhD *Cape Town*

Emeritus Professor & Senior Research Scholar:
MG Alexander, PrEng BSc(Eng) MSc(Eng) PhD *Witwatersrand* FSAICE FSAAE, MASSAf MICT

Honorary Research Associates:
V Collis, PrEng PrArch BSc(Eng) *Cape Town*
S Nhleko, BSc(Eng) MSc(Eng) *Cape Town* PhD *Oxford*
M Santhanam, BTech *IIT Madras* MS PhD *Purdue*

Administrative Staff:
W van der Ross

Laboratory assistant:
L Adams

Crystallisation and Precipitation Research Unit (CPU)

Although industrial applications of precipitation have a long history and precipitation has been studied scientifically since the 1930s, understanding of these processes is still very limited. Industrially, precipitation reactions are generally carried out in very simple reactor systems. Probably over 90% of industrial precipitation processes are carried out in ordinary stirred tank reactors operated in a batch-wise mode. Major problems, however, often occur in control of precipitation processes, specifically in understanding the effect of processing conditions on reactor performance and product characteristics such as precipitate morphology, purity and particle size distribution. Consequently, there is a need to develop a deeper scientific understanding of precipitation processes that are currently based on empirical knowledge. The specific objective of furthering this scientific understanding is in order to be able to optimise and control precipitation processes in extractive metallurgical processes as well as in treatment of effluent streams.

The Crystallisation and Precipitation Research Unit has national recognition as the only facility in the country for concerted research in the area of precipitation and crystallisation. In addition, the particular research thrust is unique internationally. Industrial support for the programme is on-going, as seen by active funding for and interest in research projects. Presentation of Continuing Professional Development courses to industry; such as the Industrial Crystallisation course (in collaboration with Prof GM van Rosmalen of TU Delft) and specific courses given to industrial partners are an on-going activity.

Professor and Director:
AE Lewis, PrEng BSc(Eng)Chem MSc(Eng) PhD *Cape Town* FSAIChe FSAIMM MASSAf FSAAE FIChemE

Associated Academic and Technical Staff:
J. Chivavava, BEng(Chem) *NUST* MSc(Chem) *Cape Town* AMIChemE

Website: www.crystal.uct.ac.za
Energy Research Centre (ERC)
The Energy Research Centre was formed by amalgamating two existing energy research groups housed within the Faculty, namely the Energy Development Research Centre (EDRC) and the Energy Research Institute (ERI) and is currently situated in the Department of Mechanical Engineering.

The ERC is a multi-disciplinary Centre that conducts high quality, targeted and relevant research as well as offering postgraduate opportunities at the Master’s and PhD levels. Two Master’s programmes are convened by the Centre, an MSc in Sustainable Energy Engineering and an MPhil in Energy and Development Studies with a focus on policy. The energy policy stream accepts students from a wide range of graduate programmes, while the energy technology stream focuses more on engineering graduates. These two streams comprise a coursework component and a dissertation component. Masters coursework will be suspended for 2017 due to re-design of the curriculum.

Students also have the option of registering for a Masters by dissertation only. This route opens opportunities for students who are unable to relocate to Cape Town to attend the structured courses, but who have a good energy background.

Professor and Director:
H Winkler, MSc Berkeley MA PhD Cape Town

Energy & Climate Change Group Leader:
K Altieri, MPP Princeton University PhD Rutgers

Energy, Poverty and Development Group Leader:
J de Groot, BSc(Int Dev) Wageningen MA(Cult Antropology) Leiden MSc(Dev Studies) Wageningen

Energy Efficiency Group Leader:
A Hibberd, MSc PGDipMan(Dist Com Info) Cape Town

Energy Modelling Group Leader:
AG Hughes, BIng Stell MSc (Eng) Cape Town

Renewable Energy Group Leader:
A Madlopha, BSc MSc Malawi PhD Strathclyde

Research Staff:
F Ahjum, MSc(Eng) Cape Town
B Batidzirai, BSc(Eng)Elec UZ MSc (Energy) PhD Utrecht
MJ Boule, BSc, BSc (Hons) Rhodes MPhil Cape Town
T Caetano, MSc(Eng) BCom (Hon) Economics Cape Town
GC Gariseb, BTech
S Jenner, BSc MPhil Cape Town
W Kruger, BA(Policy Studies) BPhil(Sust Dev) MPhil(Sust Dev) Stell, MSc(Dev Studies) Antwerp
R Larmour, BSc(Eng) Cape Town
A Marquard, BA Cape Town BA(Hons) MA Rhodes PhD Cape Town
B Martin, Nat Dip Business CPUT PGDip: Climate Leadership Wits
B McCall, MSc(Eng) Cape Town
B Merven, MSc(Eng) MSc(FinMaths) Cape Town
M Moorlach, MSc Eindhoven
A Moyo, MSc in Applied Economics Cape Town
Minerals to Metals

The Minerals to Metals Signature Theme (MtM) was established in 2007 to integrate existing capacity in minerals beneficiation research in the Department of Chemical Engineering, and expand the work to other researchers at UCT. There is a strong focus on sustainability, with research aimed at increasing the amount of mineral or metal extracted from ores, and at reducing the environmental and social impacts of mineral beneficiation operations. What makes the MtM initiative unique is that researchers focus on entire minerals processing flow sheets or production sequences (systemic approach), as well as on individual mineral extraction processes (fundamental approach). Members of the group have developed a new Master of Philosophy program specialising in Sustainable Mineral Resource Development, which was inaugurated in 2014. The programme is delivered jointly with the University of Zambia, as part of the Education for Sustainable Development in Africa project of the United Nations, and includes courses at the UCT Graduate School of Business and the Sustainability Institute at the University of Stellenbosch. On the local front, Minerals to Metals has teamed up with The Green House, a niche sustainability consultancy, to develop a minerals beneficiation strategy for the K-ZN Province, on behalf of the K-ZN Department of Economic Development, Tourism and Environment.

Professor and Director:
D Bradshaw, BSc(Eng) PhD Cape Town (SARChI in Minerals Beneficiation)

Associated Academic Staff:
M Becker, BSc(Hons) MSc Geology Cape Town PhD Pret
A Black, BA Cape Town BA(Hons) Sussex MSocSc Natal PhD Cape Town
JL Broadhurst, BSc(Hons) MSc Port Elizabeth PhD Cape Town
A Buffler, MSc PhD HDE Cape Town
B Cohen, BSc(Eng) PhD Cape Town
DA Deglon, BSc(Eng) Wits MBA PhD Cape Town MSAIMM
J-P Franzidis, BSc(Eng) MSc(Eng) Cape Town PhD Open MSAIChE MSAIMM
D Fuh, BSc(Hons) Buea MA Botswana PhD Basel
STL Harrison, BSc(Hons) Cape Town PhD Cantab MSAIChE SASM FSAIMM FSAAE ASSAf FWISA
N Isafiade, BSc(Hons) Ilorin MSc(ChemEng) Ife PhD Cape Town
URERU will be driven by four broad thrusts:

- Urban Real Estate markets dynamics and Trends
- Urban Real Estate Investment and Finance,
- Urban Real Estate land economics and management
- African Urban Real estate markets

URERU promotes academic research and disseminates research to the private and public sectors based on a research agenda for the period 2015-2020

The primary source of funding of the research unit is Nedbank Corporate Property Finance who have committed to the amount of R1 million per year for four years. The intention of the unit is to raise further funding from a variety of sources. These are likely to include:

- Private sector funding
- Public sector funding
- Professional bodies (RICS)
- International bodies

Associate Professor and Director:
F Viruly, BA(Hons) *Witwatersrand* MA(Dev Econ) *Kent* FRICS

Associated Academic staff:
KA Michell, BSc(QS) MPhil *Cape Town* PhD *Salford* PrQS PMAQS MRICS MSAFMA
RPT McGaffin, BSocSc *Cape Town* MCRP *Cape Town* MPhil *Cantab*
MM Mooya, BSc(Land Economy) *Copperbelt* MPhil(Land Economy) *Cantab* PhD(Real Estate) *Pret*

Urban Water Management Research Unit (UWM)

The management of water in urban areas is an issue of strategic importance, and one which requires significant human capital and knowledge development. The successful management of water in a developing nation such as South Africa has as an imperative the integration of technologies and technical designs that are sustainable in that they take all due consideration of the environment (e.g. issues of water scarcity, water quality and climate change), the economy and their social impacts, including reducing poverty and inequality.
The Urban Water Management (UWM) research unit at UCT is interdisciplinary in nature, including aspects of Civil Engineering, Social Anthropology, Environmental & Geographical Science, Architecture, and Construction Economics & Management. In addition, experts from a range of disciplines such as freshwater ecology, epidemiology, landscape architecture and others, are involved in collaborative research projects along with researchers from other institutions as well as local authority officials from the major cities in South Africa. The group seeks to explore integrated sustainable approaches to addressing problems of water management in urban areas. It subscribes to the notion of Integrated Urban Water Management (IUWM) by which is meant “the holistic management of water in the urban environment so as to minimise the impact on rural water resources (quantity and quality), and maximise its utility within the town or city”. Particular emphasis is placed on the urban drainage (sewerage, stormwater management) side of the urban water cycle.

The overall research thrust is aimed at the development of water sensitive cities (including all urban areas) in southern Africa, and is based on three focal areas within the main theme of integrating the water management components of socially relevant and sustainable urban water use and management patterns, i.e. ‘Water as a Resource’, focused on adding value rather than creating/discarding waste; Water Management’, focused on low impact development; and ‘Building Resilience to Climate Change’. The UWM group offers a MSc(Eng) degree involving coursework and research degrees at Masters and PhD level.

Professor and Director:
NP Armitage, PrEng, BSc(Eng)Civil Natal, MSc(Eng) Cape Town, PhD Cape Town FSAICE, FWISA, FIMESA

Associated Academic Staff:
K Carden, BSc Cape Town MSc(App Sci Civ Eng) Cape Town PhD Cape Town FWISA
S Nurick, BCom BSc Cape Town MPhil Cape Town MRICS
T Sanya, BArch Makerere MArch Stuttgart PhD Oslo
A Spiegel, BA Cape Town MA Cape Town PhD Cape Town
F Viruly, BA Wits MA Kent FRICS
K Winter, BA HDE Cape Town MA London PhD Cape Town

Administrative Officer:
G Verster

Other entities

Continuing Professional Development

Co-ordinator:
H Tait, BHE Stell

Administrator:
S Jemaar

The CPD programme offers short courses, workshops and conferences. These provide a means for the on-going education of engineers and other technical staff, outside of the formal academic courses offered at UCT for degree purposes. Engineering education is considered to include all subjects which will benefit engineers and technical staff in their professional and vocational activities, and this covers a wide field. Generally there are no formal academic qualification entrance requirements to CPD courses. In some cases, some prerequisite knowledge may be required. A certificate of attendance or of successful completion (where an examination is passed) is normally issued. Some courses may be undertaken outside of working hours, while others may require
attendance for a number of days on a full time basis. Courses may also be run on an in-house basis for companies, if requested.

In terms of the agreements between the Engineering Council of South Africa (ECSA) and other international engineering bodies, South African registered professionals are obliged to keep abreast of developments and knowledge in their fields of expertise in order to maintain and demonstrate their competence. All ECSA registered persons are required to undertake and record CPD activities as a prerequisite to renewal of their professional registration. Most of the courses offered by the CPD Programme are registered with ECSA for CPD points.

The CPD web address is www.cpd.uct.ac.za.

Geographical Information Systems Unit

Administrators:
N Lindenberg, BSc(Hons) Cape Town
T Slingsby, MSc(Eng) Cape Town

The UCT GIS Laboratory acts as a consulting and resource centre for Geographic Information Systems researchers and postgraduate students. We administer the ESRI site license for Campus, act as a central data warehouse, offer support for GIS-related queries and provide a consulting service for project planning, course design and lecturing. The Lab also offers a small computing facility with PC's equipped with the latest ESRI software, an A0 digitizer, and a number of hand-held GPS receivers for field data collection.

Professional Communication Studies

Associate Professor and Convener:
J English, BA MPhil Cape Town PhD Glasgow Caledonian

Administrative Staff:
AJ Rumbelow, Diagnostic and Therapeutic RadDip Cape Town

Professional Communication Studies (PCS) courses aim to equip students with essential theory and skills in the areas of oral, written and interpersonal communication, as recommended by professional bodies such as ECSA, (SA)IMechE and IEEE.

Outcomes of the courses are knowledge and ability in:

- research methods using libraries, academic sources, Internet; referencing and citation; professional ethics; reports; executive summaries to company and public readership;
- business proposals; letters of application and detailed CVs; posters; presentation skills;
- visual literacy and graphics.

Website: www.pcs.uct.ac.za
SCHOLARSHIPS, PRIZES, CLASS MEDALS AND DEAN'S MERIT LIST

Scholarships/Awards
Details of scholarships and awards available are given in the Financial Assistance for Postgraduate Studies and Financial Assistance for Undergraduate Studies Handbooks available from the Registrar. The following is a selected list of scholarships and awards. Note that the scholarships on offer and the values are subject to change without notice.

Architecture, Planning and Geomatics

Architecture and Planning
Hugh and Win Walker Scholarships: Awarded with preference for degrees in Architecture and, thereafter, Planning undertaken at UCT. Applications to the Postgraduate Scholarships Office/Undergraduate Funding Office.

Geomatics
Twamley Undergraduate Scholarship: Awarded on the basis of the most outstanding academic performance at the end of the First Year of study, provided that the nominee shall have met the requirements for inclusion in the Dean's Merit List.

Twamley Postgraduate Scholarship: Awarded on the recommendation of the Chair of Surveying on the basis of academic achievement and other appropriate experience for postgraduate study in Geomatics.

Construction Economics and Management
Association of Construction Project Management (ACPM) Scholarship: R2500 for a South African holder of UCT's Department of Construction Economics & Management's BSc Hons in Quantity Surveying or BSc Hons in Construction Management degree at UCT who meets the entrance requirements for the MSc(Project Management) programme and has financial need. Applications to the Admin Officer, Need-based Bursaries, Post-graduate Funding Office, Otto Beit building, Upper Campus, UCT. ACPM must be kept appropriately informed. (This is not a prize but an award to a worthy student in need on financial aid and must, therefore, be administered by UCT's Funding Office.)

Construction Education Sector Training Authority (CETA) Bursaries: Awarded to students entering full-time postgraduate studies. Applications to be submitted by 31 August to CETA, PO Box 644, Bedfordview 2008.

JT Ross (Pty) Ltd scholarships: Three awards of R20 000 towards the tuition fees for the BSc (Honours) in Property Studies: this will be awarded to three of the best students in the final year of the BSc Property Studies degree. This award is for obtaining a cumulative GPA above 70% and will be awarded to previously disadvantaged students who are in financial need. On completion of their studies they will be offered a one year internship with JT Ross which is not compulsory.
National Research Foundation: Awarded on merit for Honours, full/part-time Master’s and Doctoral Study. Applications to be submitted to the Postgraduate Scholarships Office by 15 August for Honours and 31 December for Master’s study and 30 April for Doctoral study.

National Research Foundation: NRF Prestigious Awards: Awarded on merit for full-time registered Master’s or Doctoral Studies. Applications to be submitted by 30 June (internal) or 31 July (agency).

NRF Grantholder Bursaries: Applications to be submitted by 28 February (internal) or 31 March (agency).

Tobie Louw Bursary - BSc(Hons)(QS) Students: Awarded for Postgraduate study in Quantity Surveying. Applications to be submitted to the Prizes and Awards Committee, Association of South African Quantity Surveyors, PO Box 3527, Halfway House, 1685 by, 31 January

Quantity Surveyor's Research Award - BSc(Hons)(QS) Students: Prestige award for research work into technical and managerial problems in the building industry. Applications to be submitted to the Prizes and Awards Committee, Association of South African Quantity Surveyors, PO Box 3527, Halfway House, 1685, by 15 June.

Queen Elizabeth II Jubilee Fund Scholarship: Awarded to Bachelor’s and taught Master’s students who are members of the CIOB. Applications to be submitted to the Scholarship Secretary, Professional and Technical Directorate, CIOB, Englemere, Kings Ride, Ascot, Berkshire, SL5 7TB, England.

Engineering

General

Klaus-Jürgen Bathe Scholarships: Awarded to students in the final 2 years of study who show evidence of high intellectual power and commitment to the achievement of excellence in the field of Engineering.

Council Postgraduate Scholarship): Awarded on the results of the examinations for the degree of BSc(Eng) or BSc(Geomatics), based on honours points. Candidates should have obtained First Class Honours and intend to continue with the study of engineering or geomatics.

E D Steytler Memorial Scholarship (Undergraduate): Awarded to the student obtaining the highest weighted average in the First Year examinations.

Twamley Undergraduate Scholarship: Awarded on the basis of the most outstanding academic performance at the end of the First Year of study.

Civil Engineering

Christopher Robertson Scholarship (Undergraduate): Awarded to the student in Civil Engineering who has made the most progress in the Third Year of studies. (Where there is a choice between candidates of equal merit, preference is for those with fewer scholarships and to whom the value of the award would be advantageous).

Ninham Shand Scholarship (Postgraduate): Awarded on examination results for the BSc(Eng) Civil degree. The candidate should have obtained Honours and intend to undertake further study.

Chris van Breda Scholarship (Postgraduate): Awarded on final examination results for the BSc(Eng) Civil degree. The candidate should have obtained Honours and intend to undertake further study.
Mechanical Engineering

Duncan McMillan Scholarship (Undergraduate): Awarded annually to the First Year Mechanical Engineering student gaining the highest weighted average, subject to the holder maintaining satisfactory progress and conduct.

Class Medals

Architecture, Planning and Geomatics

Class medals may be awarded to students who have shown special ability in the course. They are only awarded where special merit should be recognised. Only one medal may be awarded in a course. Any student who repeats a course will be ineligible for a medal in that course. Class medals may be awarded in the following courses:

- **APG1016F** Geomatics
- **APG2039W** Design and Theory Studio II
- **APG3037W** Design and Theory Studio III

Construction Economics and Management and Engineering

Class medals may be awarded to the best students in each of the following first year core courses: CHE1005W, CIV1005W, CON1004W, CON1011F, CON1012S, CON1018W, CON1019F/S, EEE1006F, EEE1007S, MEC1002W and MEC1005W.

Class medals are also awarded to each of the second, third and (where applicable) fourth years of study to students with the best weighted average in core, core-elective, elective and optional courses in the following programmes:

- Chemical Engineering
- Civil Engineering
- Construction Management
- Construction Studies
- Electrical Engineering
- Electrical and Computer Engineering
- Electro-Mechanical Engineering
- Geomatics
- Materials Science
- Mechanical Engineering
- Mechatronics
- Property Studies
- Quantity Surveying

Prizes

The following prizes may be awarded at the discretion of the Faculty. The prize offerings and values are subject to change without notice.

General

David Haddon Prize: R300 for the purchase of books for the best Architecture or Quantity Surveying student in the subject Professional Practice (APG4044S or CON4034W).

Joseph Arenow Prizes: (two x R3000) (i) for the best Master’s dissertation in the Faculty of Engineering & the Built Environment (ii) for the best PhD thesis in the Faculty of Engineering & the Built Environment.
Aluminium Federation of South Africa Award: R1000 for the best project in the final year of BAS or BAS(Hons) entailing the use of aluminium.

ArcelorMittal South Africa Prize: R1000 for the best innovative design using ArcelorMittal South Africa Steel Products.

Cape Institute for Architecture Measured Drawing Prize: R500 for Measured Drawings of old works in the Cape Province.

Cape Institute for Architecture Prize: R750 for the best student graduating in the MArch(Prof) programme.

Cape Institute for Architecture Prize: R2000 for the best student graduating in the postgraduate Architecture degree programmes.

The Carl Borckenhagen Memorial Prize: R3000 to be awarded to the best student over the two years of study in the MCRP programme.

Clay Brick Association Prize: R250 for the purchase of books to the student of Architecture who has made best use of bricks in his or her design work.

Corobrik Prize: R500 for the best project entailing the innovative use of clay bricks from work done in 2nd year.

Corobrik Prize: R500 for the best project entailing the innovative use of clay bricks from work done in 3rd year.

CNdV Africa Prize: R500 for the best student in Landscape Construction in the second year of the Master of Landscape Architecture programme.

CNdV Africa Prize: R500 for the best student in History and Theory of Landscape Architecture across first and second year in the Master of Landscape Architecture programme.

Essay Prize: R300 awarded to the BAS(Hons) student who produces the best essay.

General JBM Hertzog Prize: R1250 awarded annually to the best final year student in the MArch(Prof) programme.

George Menzies Prize: R2000 awarded on the results of the final examinations to the best student in Geomatics.

Gibbs St Pol Landscape Architects Prize: R1000 and a certificate awarded to a BAS student for the finest BAS Major Project exploring Landscape Architecture.
Helen Gardner Travel Prize: Two prizes of R20 000 each awarded by UCT to students who have completed the third year of the BAS degree but who have not yet been admitted to the BAS(Hons) degree. Applications to the Director, School of Architecture and Planning.

Holm Jordaan Architects & Urban Designers: R500 gift voucher for a Project of Merit that deals with sustainability and/or environmental issues in BAS.

Holm Jordaan Architects & Urban Designers: R500 gift voucher for a Project of Merit that deals with sustainability and/or environmental issues in BAS(Hons).

Institute of Landscape Architects of South Africa Prize: R300 book prize for the best Landscape Design Studio Portfolio in the first year of the Master of Landscape Architecture Programme.

Institute of Landscape Architects of South Africa Prize: R500 and certificate for the best student in the second year in the Master of Landscape Architecture Programme.

Institute of Landscape Architects of South Africa Prize: R300 book prize for the best Landscape Architecture dissertation in the second year of the Master of Landscape Architecture Programme.

Ivor Prinsloo Prize: R450 for the best essay in Architectural Theory in the BAS(Hons) programme.

Ivor West Memorial Prize: R4000 for the best second or third year Geomatics student.

John Perry Prize: R2000 for the best work done in the third year of study of the BAS degree.

Lisa Blane Memorial Prize: R1000 for the best student in the Technology II course.

Lisa Blane Memorial Prize: R1000 for the most improved student in the Technology II course.

Lisa Blane Memorial Prize: R2000 for the student who displays the most innovative use of technology in 3rd year.

Molly Gohl Memorial Prize: R3000 for books or instruments to the best woman student completing the third year of study of the BAS degree.

New World Associates Prize: R300 voucher for the student with the best use of plants in Landscape Design.

Reuben Stubbs Award: A certificate for any project exhibiting an expression of structural integrity, economy of materials, and considered a worthwhile contribution to the integration of Structure and Design.

South African Geomatics Institute (WC) prize: for the best final year student in cadastral surveying, land tenure and town planning.

South African Institute of Architects prize: R500 for the best student in the MArch (Professional) programme.
SACAP (South African Council for the Architectural Profession): Medal for the best Architecture student: for work done over six years.

South African Planning Institute (Western Cape) Prize: R1000 and certificate for the best first year student in the MCRP and MCPUD programmes.

South African Planning Institute (Western Cape) Prize: R1000 and certificate for the best overall student work in 2nd year MCRP and MCPUD programmes.

South African Planning Institute Prize: R1000 and certificate for the most improved student over the 2 year MCRP & MCPUD curricula.

Urban Design Institute of South Africa (Western Cape) Prize: R1000 awarded to the top student in first year subject to a minimum achievement of passing with distinction.

Urban Design Institute of South Africa (Western Cape) Prize: R1000 awarded to the top student in second year subject to a minimum achievement of passing with distinction.

The Western Cape Government Prize for the best Local Area Planning Project (Project A): Certificate and six-month internship prize for the best Local Area Planning Project.

The Western Cape Government Prize for the best Metropolitan Planning Project (Project B): Certificate and six-month internship prize for the best Metropolitan Planning Project.

The Western Cape Government Prize for the best Regional Planning Project (Project C): Certificate and six-month internship prize for the best Regional Planning Project.

Construction Economics and Management

Association of Project Management Book Prize: R2500 for the best overall student in the first year of the MSc(Project Management) programme based on the grade point average after one year of registration on a full curriculum load of four modules.

Association of South African Quantity Surveyors Gold Medal: The department nominates a candidate for this national award for the best quantity surveying graduate at any accredited South African university offering a degree in quantity surveying. Awards are not necessarily made each year.

Association of South African Quantity Surveyors Prizes: R900, R1100, R1300 and R1600 for the best student in each year of study, respectively, for the BSc(Construction Studies) and the BSc(Hons) in Quantity Surveying.

Association of South African Quantity Surveyors Western Cape Chapter Committee Prize: R3000 to the best all-round student in the final year of study of the BSc(Hons) in Quantity Surveying.

Bell-John Prize: R1600 for the best all-round student registered for BSc(Construction Studies) or BSc(Hons) in Quantity Surveying in any year of study.

Bernard James and Partners Prize: R1000 for the BSc(Hons) in Quantity Surveying student (or team) obtaining the highest award (Minimum First Class Pass) in Research Project (CON4047W).

Capital Land Prize: R1500 for the best student collectively in the subjects of Property Investment, Finance and Portfolio Management (CON2024S, CON3034F and CON4048S)
The Chartered Institute of Building (CIOB) Prize: R1000 for the final year BSc(Hons) Construction Management student who has achieved the highest average overall mark.

The Chartered Institute of Building (CIOB) Book Prize: R2000 for the MSc Project Management student who has achieved the highest average overall mark.

Clay Brick Association Prizes: Two prizes of R2000 and R1500 respectively for the best and second best students collectively in the Construction Technology subjects CON1004W, CON2006W and CON3012W.

DVPM Prize: R1500 academic book voucher for the best overall student in the second year of study while registered on a full curriculum load who has completed all the coursework requirements for the degree of MSc Project Management.

George Strachan Prize: R200 for the best final year student in the BSc(Hons) in Construction Management.

Grinaker-LTA Book Prizes: R1000 for the best student registered for the BSc(Hons) in Construction Management (CON4038F, CON4039S and CON4049S) (Minimum First Class Pass); R1000 for the best student registered for the BSc(Hons) in Quantity Surveying in the subject of Measurement and Design Appraisal III (CON4032F and CON4037S) (Minimum First Class Pass).

Master Builders Association of the Western Cape Prize (for South African Students): R1000 for the best BSc(Construction Studies) in the second year of study; R1500 for the best BSc(Construction Studies) in the third year of study; R2000 plus floating shield for the best BSc(Hons) student in Construction Management.

Mbata, Walters and Simpson Prize: R1000 for the best all round student in third year of study for the BSc(Construction Studies) degree.

The Nedbank Corporate Property Finance Academic Achievement Award: R10 000 for the MSc in Property Studies graduating student who has achieved the highest cumulative grade point average in the taught courses of the degree.

The Nedbank Corporate Property Finance Academic Achievement Award: R10 000 for the BSc (Honours) in Property Studies graduating student who has achieved the highest cumulative grade point average in the degree.

The Nedbank Corporate Property Finance Academic Achievement Award: R10 000 for the BSc in Property Studies graduating student who has achieved the highest cumulative grade point average in the degree (to be assessed over the three years of the degree).

Old Mutual Corporate Real Estate Prize: R1000 voucher for the best all round student in the second year of study for the BSc(Property Studies) degree.

Paragon Lending Solutions Prizes: R2500 plus job-shadow opportunity with the Paragon Lending Solutions CEO for the best student in the subject of Property Finance (CON3034F). R2500 for the best postgraduate student in the course Property Finance (CON5009Z).

PMSA (WC) Prize: R4500 academic book voucher for the dissertation in MSc(Project Management) which, in the opinion of a select committee of PMSA (WC), is highly relevant to the project management profession. The award includes an invitation to an event hosted by PMSA (WC) at which the recipient will be given the opportunity to present the findings of his/her research to leading stakeholders in the industry to which it applies. The decision of the award will be made in...
the sole discretion of PMSA (WC) based on an assessment from a pool of three dissertations submitted for consideration by UCT.

Robin Marten Prize: (value to be announced) for the student with the highest average final year examination results for the third (final) year of the BSc(Property Studies) and the BSc(Hons) Property Studies degrees, taken together, subject to a minimum average of 75% having been achieved each year. In the event of a tie, the student with the higher average for the Property Valuation courses within the two year period should be selected.

Tower Property Fund Academic Book Prize: R5000 for the Honours Research Report which best encapsulates Green Building technologies and/or initiatives.

Engineering

General

Bain Merit Awards: A first prize of R5000 and a second prize of R3000 to the best third-year students in Engineering.

ECSA Medal of Merit: for the best student graduating with the degree of BSc (Eng).

ESKOM Award (R500) and entry into the ESKOM National Awards Competition: for the best Engineering BSc(Eng) graduate over the four-year degree curriculum.

John Martin Prize: R1500 for the best first year student in the ASPECT Programme.

Sammy Sacks Memorial Prize: Two prizes of R4000 each for the best classwork in MEC1002W Engineering Drawing.

Chemical Engineering

4th Year Book Prize for South African Institute for Mineral & Metalurgy: Textbook for best student in Mineral Processing for CHE4050.

Chevron Prize for Chemical Engineering Design: R5000 for the student with the best overall performance in the course CHE4036Z.

Gerda van Rosmalen Award: (Book Prize) for the most promising CHE3066 Chemical Engineering student.

Malan Chemical Engineering Medals: for the best students in each of the Second (bronze), Third (silver) and Final (gold) Years.

Malan Prize: *Perry's Chemical Engineering Handbook* for the most promising First Year student.

Omnia Prize: R2000 for the student pair completing the final year project (CHE4045Z) of the highest standard.

SA Institution of Chemical Engineers' Silver Medal: for outstanding performance over the four year curriculum, based on best overall year and credit-weighted GPA, including a fourth year credit-weighted GPA of above 75%.
Civil Engineering

Adina Award for Excellence in Computational Engineering Mechanics: R3000 for the best undergraduate final year project on any aspect of computational engineering mechanics by a student in Civil Engineering.

Aurecon Best overall Achievement Prizes: R2500, R1500, R1000 for the three best performing students.

Aurecon Prize for Water Engineering: R2000 to the student achieving the highest aggregate score in Water Engineering courses (CIV2040S, CIV3043F, CIV3044F, CIV3046S, CIV3047S, CIV4042F).

Concrete Society of SA (WP Branch) Award: R1000, a book, and one year’s membership of the Concrete Society of Southern Africa for outstanding work in the area of concrete technology.

D C Robertson Memorial Prize (donated by the Western Cape Branch of the South African Institution of Civil Engineering): R1000 for the student submitting the best work in the final year design project.

Mott MacDonald Africa Prize: R3500 (to be shared by members of the winning team) for the design team that delivers the best design project in the final year design project.

George Menzies Prize: R2000 awarded on the results of the final examinations to the best student in Civil Engineering.

Gibb Student Contribution Prize: R2000, for the student with the greatest all-round contribution to the undergraduate programme.

Gibb Prize for Transport Engineering: R2000, for the student showing the most promise in the field of transportation and traffic engineering.

Paterson & Cooke Prize: R2000 for the best work in the final year research project.

JG Afrika: R2000 for the fourth year civil engineering student with the highest overall achievement in professional communication.

Joint Structural Division of SAICE & IStructE Prize: R2000, for the final year student with the best overall academic achievement in the field of structural engineering.

PPC Cement Prize: R2500 and a book for the best undergraduate project on concrete technology.

Prestedge, Retief, Dresner & Wijnberg Prize: R2000 for the best Water Engineering final year project.

Professor Derrick Sparks Geotechnical Engineering Prize (donated by the South African Institution of Civil Engineering, Western Cape Branch): R1000 for the best final year project in Geotechnical Engineering.

SA Institute of Steel Construction Prize: R1500 for the best structural steel design project submitted by an undergraduate student.

South African Institution of Civil Engineering Professional Practice Prize: R1000 for the best performance in Professional Practice (CIV4041F)
Thesis Poster/e-Portfolio Prize: R500

Thesis Talk Prize: R500

UWP Prize: R1500 for the student with the best result for the Urban Water Services course (CIV3047S).

Electrical Engineering
Peralex Electronics prize: R1500 for the best student in EEE3017W.

Peralex Electronics prize: R1500 for the best student in EEE4001F.

Peralex Electronics prize: R1500 for the best student in EEE4084F.

Siemens Prize: R2500 for the final year Electrical Engineering student submitting the best thesis (EEE4022S/F).

Mechanical Engineering/Electro-Mechanical Engineering
AAT Composites Award: R1000 for best project for MEC4110W Research Project involving use or application of composite materials.

Albert Wessels Prize for Best First Year Student in the Department of Mechanical Engineering: R5000 plus a certificate for the first year student with the highest grade point average.

Albert Wessels Prize for Best Second Year Student in the Department of Mechanical Engineering: R5000 plus a certificate for the second year student with the highest grade point average.

Albert Wessels Prize for Best Third Year Student in the Department of Mechanical Engineering: R5000 plus a certificate for the third year student with the highest grade point average.

Albert Wessels Prize for Best Fourth Year Student in the Department of Mechanical Engineering: R5000 plus a certificate for the fourth year student with the highest grade point average.

Aluminium Federation of South Africa Prize: R1000 for the best report in MEC4110W Research Project or MEC4091S Honours Research Project involving the use or application of aluminium.

Best Student in Dynamics I: R500 awarded to the student with the top mark in Dynamics I

Best Student in Dynamics II: R500 awarded to the student with the top mark in Dynamics II

Best Student in Solid Mechanics I: R500 awarded to the student with the top mark in Solid Mechanics I

Best Student in Solid Mechanics II: R500 awarded to the student with the top mark in Solid Mechanics II

Best Final-Year BScEng Project or BSc (Hons) Project: R1000 awarded for the top mark in the final-year BScEng project or BSc (Hons) project in an Impact-Related topic.
The Gerald Nurick Prize for Excellence in Impact-Related Postgraduate Research: R1500 awarded to either an MSc student (the dissertation must be awarded with distinction) or PhD student (the thesis must have excellent reviews).

SAI Mech Eng Award: Floating trophy and certificate for the best student in the Mechanical Engineering design and laboratory project in the Final Year of study.

SASOL Prize for MEC2020W: Achievement Medal and R750 for the best second year student in the course MEC2020W, Design I

SASOL Prize for MEC3073S: Achievement Medal and R1000 for the best third year student in the course MEC3073S, Design II

Dean's Merit List

The Dean's Merit List, which is published annually, contains the names of students whose academic performance over the year is meritorious and hence worthy of recognition. Students who qualify for inclusion in the List receive a letter of commendation from the Dean. The List is posted on the notice boards and published in the Dean's Circular. The academic records of students are endorsed to record their achievements in qualifying for inclusion on the List. To be eligible for the Dean's Merit List a student must pass the prescribed courses for which he or she is registered for the year in question; a student registered for a four year degree must be in the First, Second or Third year of study; and a student registered for a three year degree must be in the First, or Second year of study. The list is compiled annually in mid-December and includes all courses which have results at that point in time. The criteria for inclusion in a particular year are as follows:

- a first-year ASPECT student must have earned not less than 96 credits and obtain a year average of not less than 75%; a student who was in the ASPECT programme in the first year of study must earn not less than 110 credits of approved coursework in any subsequent year and obtain a year average of not less than 70%.
- a student in any other undergraduate programme must have earned not less than 132 credits of approved coursework for the year in question and obtain a year average of not less than 70%.

Note: For credits to count for Dean's Merit List purposes, they must have been taken and passed in the current year. Transferred credits from another year, degree or institution do not count.
Architecture and Planning

The Bachelor of Architectural Studies (BAS) degree provides the necessary grounding for entry into a professional architectural course or into postgraduate programmes in city and regional planning, urban design or landscape architecture. The programme merits exemption from Part 1 of the Royal Institute of British Architects', and the Commonwealth Association of Architects', own examination in Architecture.

The BAS(Hons) qualification introduces an honours degree within a succession of qualifications leading towards professional qualification in architecture. It is a prerequisite qualification for admission into the Master of Architecture (Professional) (HEQS-F level 8).

The MArch (Professional) qualification introduces a master's degree within a succession of qualifications leading towards professional qualification in architecture. It is a prerequisite qualification for statutory registration as a Candidate Architect with the South African Council for the Architectural Profession (SACAP), in terms of the Architectural Professions Act 2000 (Act No 44 of 2000). To attain registration as Professional Architect, the candidate must complete a two-year period of practical experience in an architectural office and pass a registration examination set by SACAP.

Both the degrees of Master of City and Regional Planning (MCRP) and Master of City Planning and Urban Design (MCPUD) are recognised for professional accreditation purposes by the South African Council for Planners (SACPLAN). Registration with the Council, which is a statutory requirement to practise, can occur after two years of supervised practical experience. The MCRP programme has provisional accreditation from the Royal Town Planning Institute.

Landscape Architecture: The Master of Landscape Architecture (MLA) is a professional degree. Eligibility of graduates for membership of the South African Council for Landscape Architects Profession (SACLAP) will be dependent upon firstly, a further two years training under a professional landscape architect, and the successful completion of the Council's professional examination.

Information Regarding Special Qualifying Examination for Foreign Architects wishing to obtain registration as an architect within South Africa.

(a) An applicant for registration may be recommended by the Council for admission to the Special Qualifying Examination. The nature and extent of the examination shall be determined in each case by the Council after consideration of all available evidence with regard to the standard and quality of the candidate's qualifications. If necessary, the Council may interview an applicant or require him or her to sit a written test in order to come to a decision as to the standard of the qualification. Only qualifications requiring a minimum of four years full-time study in architecture at a university or like educational establishment will be considered to be of a standard sufficient to give admission to the Special Qualifying Examination. An applicant who obtains a recommendation from the Council may be required to attend lectures and/or practical training at a university of his or her choice and to pass the examination(s) set by the University. The University or body conducting the Special Qualifying Examination shall determine when the examination(s) shall be held and when the fees are to be paid. A candidate who completes the examination(s) will be furnished with a certified statement to that effect.

(b) All applicants who have not passed a qualifying examination recognised in terms of Section
19(2)(b) and 19(7)(c)(ii) of the Architects' Act 1970 must apply to the South African Council for Architects for admission to the Special Qualifying Examination. The following courses of action may be adopted: An applicant who, in the opinion of the Council, cannot be admitted to the Special Qualifying Examination shall be referred to the University of his or her choice which will decide what will be required of him or her in order to graduate.

Geomatics Registration

The South African Geomatics Council recognises the BSc(Geomatics) degree, under The Geomatics Professions Act 19 of 2013, as a suitable theoretical qualification for registration as a Professional Land Surveyor and Professional Surveyor in the categories of Engineering and Photogrammetry and as a Professional Geoinformatics Practitioner. In addition to the degree, a graduate wishing to register in any of the above categories is required to undergo a period of practical training with a practising Professional and to undertake various professional examinations. Professional Land, Engineering and Photogrammetric Surveyors, as well as Professional Geoinformatics Practitioners, enjoy a status equivalent to that of an Associate Member or Fellow of the Royal Institution of Chartered Surveyors (RICS) in most parts of the world.

Representation and professional organisations

Holders of a degree in Geomatics, after registration with the SA Geomatics Council can apply for membership of the South African Geomatics Institute (SAGI). Graduates specialising in geoinformatics may prefer to become members of the Geo-Information Society of South Africa (GISSA), while those in the hydrographic surveying field may be interested in associating with the Hydrographic Society of South Africa. Internationally, Geomatics disciplines are represented by a number of organisations, the primary one being the Federation International Geodesic (FIG) and the International Society of Photogrammetry and Remote Sensing (ISPRS). These organisations represent the interests of their members at national or international level and are involved in various workshops, lectures and conference organisations.

Construction Economics and Management

All degree offerings are accredited as detailed below. The significance of accreditation is that graduates of these degrees are exempted by the accrediting bodies from having to take any further university-level exams before being allowed to take the Assessment of Professional Competence (APC) or being admitted to the Professional Interview (PI).

Association of South African Quantity Surveyors (ASAQS)

Graduates in Quantity Surveying and Construction Management are eligible for corporate membership of the Association of South African Quantity Surveyors.

Address: The Director, ASAQS, PO Box 3527, Halfway House, 1685.

South African Council for the Quantity Surveying Profession (SACQSP)

The BSc in Construction Studies together with the BSc(Hons) in Quantity Surveying and Construction Management degrees are accredited by the South African Council for the Quantity Surveying Profession as fulfilling all the academic requirements for registration as Quantity Surveyors (in terms of the Quantity Surveyors Profession Act No 49 of 2000 as amended). The BSc in Property Studies, together with the BSc(Hons) in Property Studies, enjoys similar accreditation. Thereafter, a period of three years in-service training must be undertaken under the supervision of a registered Quantity Surveyor before being admitted to the Assessment of Professional Competence and being registered with the Council as a Professional Quantity Surveyor.

Address: The Registrar, South African Council for the Quantity Surveying Profession, PO Box 3527, Halfway House, 1685.
The Royal Institution of Chartered Surveyors (RICS)
Graduates in Quantity Surveying, Construction Management and Property Studies are eligible to register with the Royal Institution as Probationers. Thereafter, a period of three years in-service training must be undertaken under the supervision of an approved mentor before being admitted to the Assessment of Professional Competence leading to membership of the Institution. Graduates of the MSc Programmes in Property Studies and Project Management enjoy similar accreditation. Address: The Secretary-General, RICS, 12 Great George Street, Parliament Square, London SW1P 3AD, England.

Chartered Institute of Building (CIOB)
Graduates in Construction Management and Quantity Surveying are admitted to the Graduate Class of the Chartered Institute without further examination. Thereafter, a period of three years in-service training must be undertaken before being admitted to the Professional Interview leading to membership of the Institute. Address: The Secretariat, CIOB, Englemere, Kings Ride, Ascot, Berkshire SL5 8BJ, England.

South African Council for the Project and Construction Management Professions (SACPCMP)
The South African Council for the Project and Construction Management Professions registers professionals and candidates in the project and construction management professions. The BSc in Construction Studies together, with the Bsc (Hons) in Construction Management is accredited by the SACPCMP. A minimum of four years post-graduation relevant practical experience must be attained under the supervision of a registered Professional Construction Manager or Professional Construction Project Manager before being admitted to the Assessment of Professional Competence and being registered with the Council as a Professional Construction Manager or Professional Construction Project Manager. Address: The Registrar, South African Council for the Project and Construction Management Professions, PO Box 653141, Benmore 2010.

The South African Council for the Property Valuers’ Profession (SACPVP)
The BSc in Property Studies together with the Bsc(Hons) in Property Studies are accredited by the South African Council for the Property Valuers’ Profession as fulfilling all the academic requirements for registration as a valuer in terms of the Property Valuers’ Profession Act No. 47 of 2000 as amended. Thereafter, a period of three years in-service training must be undertaken under the supervision of a registered Professional Valuer before being registered with the Council as a Professional Valuer. Address: The Registrar, SACPVP, PO Box 114, Menlyn 0063.

Engineering
The current BSc(Eng) degrees in Chemical, Civil, Electrical, Electrical and Computer, Electro-Mechanical, Mechanical Engineering and Mechatronics are accepted by the Engineering Council of South Africa (ECSA) as fulfilling all the academic requirements for registration as a Professional Engineer. In terms of the Washington Accord signed in June 2000, of which South Africa is a signatory, the Faculty's engineering qualifications have been recognised by professional engineering accrediting bodies in the United States of America, Canada, Australia, New Zealand, the United Kingdom, Ireland and Hong Kong.
In terms of the Engineering Profession Act (Act No 46 of 2000), ECSA has stipulated a minimum period of three years' approved practical training and experience after graduation under the guidance of a Professional Engineer before a candidate may register as a Professional Engineer. This period may be shortened by up to one year in recognition of successful postgraduate degree work. It is of the utmost importance that every graduate should register immediately as a candidate engineer.
The University of Cape Town enjoys a special relationship with the Association of Commonwealth Universities. The curricula, systems and standards of engineering education at the University
conform to the general pattern of the British universities and professional institutions. The degrees are therefore widely recognised. The better known of the British and South African professional institutions are listed below. Graduates are eligible for exemption from the written Associate Membership examinations of the British institutions, as detailed below, but in all cases a period of approved professional work is required before admission to corporate membership. Student membership of these institutions is generally available to undergraduates. Information on other professional engineering bodies is available from the relevant department in the Faculty.

The Institution of Chemical Engineers
Graduates in Chemical Engineering are eligible for exemption from the Membership Examination. Address: 165-189 Railway Terrace, Rugby, CV21 3HQ, United Kingdom.

The South African Institution of Chemical Engineers
Graduates in Chemical Engineering may be admitted to membership, without further examination. Address: PO Box 808, Pinegowrie, 2123.

The Institution of Civil Engineers
Graduates in Civil Engineering are eligible for exemption from Parts I and II of the Associate Membership examinations, and must satisfy the requirements of the Professional interview for admission to corporate membership. Address: Great George Street, Westminster, London SW1 P3AA.

The South African Institution of Civil Engineering
Graduates in Civil Engineering are eligible for corporate membership once they are registered as Professional Engineers. Address: Postnet Suite 81, Private Bag X65, Halfway House, 1685.

The Institution of Structural Engineers
Graduates in Civil Engineering are eligible for exemption from all but the final Design examinations. For admission to Corporate Membership, Graduates must sit and pass the Chartered Membership (Part 3) examination, entitling them to register with the UK Engineering Council as Chartered Structural Engineers. Address: 11 Upper Belgrave Street, London, SW1.

The Institution of Engineering and Technology (IET)
Membership of the IEE is open to everyone with a professional interest in electrical, electronic, information and manufacturing engineering. Student membership is open to any student studying engineering or IT. The following categories of membership are available: Member, Fellow, Student and Affiliate. Address: URL://www.iee.org/membership/

The South African Institute of Electrical Engineers (SAIEE)
Graduates in Electrical Engineering may be admitted to membership, without further examination. Address: 18a Gill Street, Observatory, Johannesburg, 2198.

The South African Institution of Mechanical Engineers
Graduates in Mechanical Engineering may be admitted to membership, without further examination. Address: PO Box 34008, Rhodes Gift, 7707.

The South African Institution of Certificated Engineers
Holders of the Government Certificate of Competency are members of this Institution. Graduates in the relevant branches of the engineering profession are eligible for extensive exemptions, depending upon the degree of practical experience achieved. In South Africa a Government Certificate of Competency is mandatory for persons responsible for the supervision of industrial plant exceeding a specified size. Address: 18a Gill Street, Observatory, Johannesburg, 2198.
INDEX

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adv Bioprocess Engineering</td>
<td>118</td>
</tr>
<tr>
<td>Adv Construction Management</td>
<td>158</td>
</tr>
<tr>
<td>Adv Engineering Statistics I</td>
<td>113</td>
</tr>
<tr>
<td>Adv Hist & Theory of Arch</td>
<td>91</td>
</tr>
<tr>
<td>Adv Topics in Adsorption and Ion Exchange</td>
<td>117</td>
</tr>
<tr>
<td>Adv. Landscape Arch. Studio</td>
<td>96</td>
</tr>
<tr>
<td>Advanced Building Technology</td>
<td>91</td>
</tr>
<tr>
<td>Advanced Chemical, Physical & Biological Processes Modelling</td>
<td>140</td>
</tr>
<tr>
<td>Advanced GIS</td>
<td>85</td>
</tr>
<tr>
<td>Advanced Mechanics of Materials</td>
<td>142</td>
</tr>
<tr>
<td>Advanced Property Studies A</td>
<td>158</td>
</tr>
<tr>
<td>Advanced Property Studies B</td>
<td>159</td>
</tr>
<tr>
<td>Advanced Property Studies C</td>
<td>160</td>
</tr>
<tr>
<td>Advanced Property Valuation</td>
<td>166</td>
</tr>
<tr>
<td>Advanced Refrigeration</td>
<td>207</td>
</tr>
<tr>
<td>Advanced Soil Mechanics</td>
<td>146</td>
</tr>
<tr>
<td>Advanced Structural Concrete Engineering</td>
<td>134</td>
</tr>
<tr>
<td>An Introduction to Finite Elements</td>
<td>209</td>
</tr>
<tr>
<td>Appl Num Analy in Biochem Syst</td>
<td>118</td>
</tr>
<tr>
<td>Applied Contract Law II</td>
<td>157</td>
</tr>
<tr>
<td>Applied Maths & Modeling II</td>
<td>114</td>
</tr>
<tr>
<td>Applied Property Law</td>
<td>159</td>
</tr>
<tr>
<td>Aquatic Chemistry Part A</td>
<td>139</td>
</tr>
<tr>
<td>Aquatic Chemistry Part B</td>
<td>139</td>
</tr>
<tr>
<td>Arch Design Studio I</td>
<td>91</td>
</tr>
<tr>
<td>Arch Design Studio II</td>
<td>91</td>
</tr>
<tr>
<td>Architecture Research Method</td>
<td>92</td>
</tr>
<tr>
<td>Architecture, Planning and Geomatics</td>
<td>76</td>
</tr>
<tr>
<td>Aspects of City Design</td>
<td>88</td>
</tr>
<tr>
<td>Aspects of History & Theory I</td>
<td>93</td>
</tr>
<tr>
<td>Aspects of History & Theory II</td>
<td>94</td>
</tr>
<tr>
<td>Bioleach of Sulfide Materials</td>
<td>116</td>
</tr>
<tr>
<td>Biotechnology Laboratory</td>
<td>115</td>
</tr>
<tr>
<td>Bridge Analysis & Design</td>
<td>137</td>
</tr>
<tr>
<td>Bridge Management & Maintenance</td>
<td>144</td>
</tr>
<tr>
<td>Broadband Communication Networks</td>
<td>191</td>
</tr>
<tr>
<td>Broadband Networks</td>
<td>180</td>
</tr>
<tr>
<td>Centres and other entities established in the faculty</td>
<td>221</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>105</td>
</tr>
<tr>
<td>Chemical Engineering Topics For Scientists</td>
<td>114</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>122</td>
</tr>
<tr>
<td>Civil Engineering Measurement</td>
<td>157</td>
</tr>
<tr>
<td>Civil Engineering Project</td>
<td>135</td>
</tr>
<tr>
<td>Climate, Law and Governance</td>
<td>220</td>
</tr>
<tr>
<td>Clutter & Detection in Clutter</td>
<td>182</td>
</tr>
<tr>
<td>Computational & Applied Mech</td>
<td>210</td>
</tr>
<tr>
<td>Computational Electronics I</td>
<td>186</td>
</tr>
<tr>
<td>Computational Electronics II</td>
<td>186</td>
</tr>
<tr>
<td>Computational Fluid Dynamics</td>
<td>211</td>
</tr>
<tr>
<td>Computing for GIS</td>
<td>86</td>
</tr>
<tr>
<td>Conservation Development & Impact Assessment I</td>
<td>99</td>
</tr>
<tr>
<td>Conservation Development & Impact Assessment II</td>
<td>99</td>
</tr>
</tbody>
</table>
INDEX 251

Conservation Discip & Prac ... 99
Constructing Landscape Systems .. 89
Construction Economics and Management 151
Construction Innovation ... 160
Contaminated Land and Remediation ... 146
Contents .. 3
Continuum Mechanics ... 210
Contract Law .. 135
Convergent Telecomm & Data Net .. 179
Corp RealEstate Portfolio Mgmt .. 166
Course Codes .. 10
Courses: Guide to Terminology ... 11
Credit system .. 12
Critical Issues in Heritage St .. 219
Crystallisation & Precipitat .. 114
Dean's Merit List ... 245
Degrees and diplomas offered in the Faculty 8
Design & Management Operationl Systems 206
Design & Modelling Of Water Distribution Systems 146
Design Dissertation ... 100
Detail Landsc. Design & Doc ... 96
Digital Communications .. 180
Discrete Choice Modelling and Stated Choice Survey 147
Dissertation Architecture & Planning ... 103
Dissertation Chemical Engineering .. 113
Dissertation Civil Engineering ... 133
Dissertation Construction Economics & Management 163
Dissertation Energy & Development Studies 214
Dissertation Energy and Development Studies 214
Dissertation Materials Engineering .. 211
Dissertation Mechanical Engineering ... 205
Dissertation Preparation .. 215
Dissertation: Geomatics 120 .. 95
Durability & Condition Assessment of Concrete Structures 144
Elec&m Mec Equip in Nuclear Sta ... 177
Electrical Engineering .. 168
Electrochem Charact Techniques ... 119
Electrowinning/Refining .. 117
Energy & Climate Change .. 213
Energy Effic&Demand Side Mng .. 208
Energy Markets & Governance ... 212
Energy Modeling ... 208
Energy Project ... 213
Energy, Poverty & Development ... 212
Eng Mgmt Research Report ... 214
Environmental Law for Non-Lawyers ... 219
Environmental Management ... 97
Environmental Policy Processes .. 94
Environmental Stewardship ... 112
Experimental Techniques ... 204
Explanatory Notes on Course Codes .. 10
Finite Element Analysis ... 210
Foundation Design ... 144
Fundamental Hydrometallurgy .. 116
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals of Process Model</td>
<td>118</td>
</tr>
<tr>
<td>Fundamentals Radar Signal & DP</td>
<td>181</td>
</tr>
<tr>
<td>Further Applied Statistics</td>
<td>165</td>
</tr>
<tr>
<td>General Information</td>
<td>6</td>
</tr>
<tr>
<td>Geo-Informatics</td>
<td>97</td>
</tr>
<tr>
<td>Geo-informatics Project</td>
<td>93</td>
</tr>
<tr>
<td>Geosynthetics Engineering</td>
<td>147</td>
</tr>
<tr>
<td>Geotechnical Engineering Project</td>
<td>148</td>
</tr>
<tr>
<td>GIS For Urban & Regional Planning</td>
<td>97</td>
</tr>
<tr>
<td>Ground Improvement Techniques</td>
<td>143</td>
</tr>
<tr>
<td>Guide to the usage of this Handbook</td>
<td>5</td>
</tr>
<tr>
<td>High Resolution and Imaging Radar</td>
<td>183</td>
</tr>
<tr>
<td>History & Theory Of Landscape Architecture A.</td>
<td>88</td>
</tr>
<tr>
<td>History & Theory Of Landscape Architecture B.</td>
<td>96</td>
</tr>
<tr>
<td>History Of Conservation</td>
<td>100</td>
</tr>
<tr>
<td>Honours Nuclear Project</td>
<td>178</td>
</tr>
<tr>
<td>Housing Development & Management I T</td>
<td>159</td>
</tr>
<tr>
<td>HRM & Communication</td>
<td>162</td>
</tr>
<tr>
<td>Hydrometallurgical Sep Proces</td>
<td>116</td>
</tr>
<tr>
<td>Imaging Radar Applications</td>
<td>179</td>
</tr>
<tr>
<td>Information Theory</td>
<td>190</td>
</tr>
<tr>
<td>Integrated Land Use Transport Planning</td>
<td>136</td>
</tr>
<tr>
<td>Integrated Management Project</td>
<td>158</td>
</tr>
<tr>
<td>Integrated Urban Water Management</td>
<td>142</td>
</tr>
<tr>
<td>Integrated Wastewater Treatment Plant Design</td>
<td>139</td>
</tr>
<tr>
<td>International Affiliate 2 Months</td>
<td>150</td>
</tr>
<tr>
<td>International Affiliate 2-4 Months</td>
<td>150</td>
</tr>
<tr>
<td>International Affiliate 4-6 Months</td>
<td>150</td>
</tr>
<tr>
<td>International Affiliate 6-12 M.</td>
<td>121</td>
</tr>
<tr>
<td>International Affiliate 6-12 Months</td>
<td>150</td>
</tr>
<tr>
<td>Intro Nuclear Physics & Radiat</td>
<td>176</td>
</tr>
<tr>
<td>Intro to Business Admin</td>
<td>208</td>
</tr>
<tr>
<td>Intro To Electronic Defence</td>
<td>185</td>
</tr>
<tr>
<td>Intro to Energ Pol & Sus Energ</td>
<td>213</td>
</tr>
<tr>
<td>Intro to Molecular Modeling</td>
<td>114</td>
</tr>
<tr>
<td>Intro to Radar Systems</td>
<td>185</td>
</tr>
<tr>
<td>Introduction to Catalysis</td>
<td>113</td>
</tr>
<tr>
<td>Introduction to Research</td>
<td>164</td>
</tr>
<tr>
<td>Introductory GIS</td>
<td>85</td>
</tr>
<tr>
<td>Laboratory & Field Techniques</td>
<td>142</td>
</tr>
<tr>
<td>Landscape Arch. Studio I</td>
<td>90</td>
</tr>
<tr>
<td>Landscape Representation</td>
<td>89</td>
</tr>
<tr>
<td>Landscape Systems</td>
<td>94</td>
</tr>
<tr>
<td>Landscape Techniques II</td>
<td>89</td>
</tr>
<tr>
<td>Lateral Earth Supports</td>
<td></td>
</tr>
<tr>
<td>Law of Conservation & Dev</td>
<td>147</td>
</tr>
<tr>
<td>Leaching Hydrometallurgy</td>
<td>99</td>
</tr>
<tr>
<td>Lecture periods</td>
<td>116</td>
</tr>
<tr>
<td>Local Area Transport Planning, Management and Design</td>
<td>136</td>
</tr>
<tr>
<td>Management Accounting I</td>
<td>217</td>
</tr>
<tr>
<td>Management of Transport Supply and Demand</td>
<td>135</td>
</tr>
<tr>
<td>Managing for Performance Improvement</td>
<td>206</td>
</tr>
<tr>
<td>Manufact & Props of Ceramics</td>
<td>203</td>
</tr>
<tr>
<td>Manufact & Props of Polymers</td>
<td>204</td>
</tr>
</tbody>
</table>
Manufacture & Properties of Composites ... 203
Manufacturing with Materials .. 202
Masters Arch & Planning Diss ... 103
Masters Dissertation Architecture & Planning .. 103
Masters Dissertation Geomatics .. 95
Masters Dissertation in Engineering Management ... 205
Masters Dissertation Transport Studies ... 149
Masters Dissertation: Transport Studies ... 137
Masters in Civil Eng - Dissert Part ... 133
Masters In Civil Engineering Dissertation .. 133
Masters Paper Requirement ... 216
MCRP Minor Dissertation ... 98
Measummt& Design Appraisal III ... 156
Mechanical Engineering Project ... 207
Metro Landscape Project .. 90
Microbial Physiology & Dynamic ... 115
Microwave Components& Antennas .. 186
Microwave Filters ... 189
Minor Dissertation .. 161
Minor Dissertation Project Management ... 162
MLA Dissertation ... 98
Modelling & Simulation of Wastewater Treatment Systems 138
Molec Biology & Biocatalysis .. 115
MSc CEM Dissertation .. 163
MSc Chemical Eng Dissertation .. 113
MSc Electrical Eng Dissert .. 178
MSc Electrical Eng Part Diss .. 178
MSc Engineering Management .. 207
MSc Mechanical Eng Dissert .. 205
MSc Project Mgmt Dissertation .. 163
MSc Property Studies Dissert .. 163
MSc Sustainable Engy Eng Diss ... 209
Multi-target Multisensor Tracking and Data Fusion ... 182
Multivariable Control System Design ... 178
Natural Systems ... 88
Network & Internet Security .. 179
New & Renewable Energy Technol ... 211
Non-destructive Test & Evaluat ... 207
Nonlinear Material Behaviour .. 210
Non-Motorised Transportation .. 136
Nuclear Manufacturing and Construction Eng Management 204
Nuclear Reactor Ops & Safety .. 188
Nuclear Reactor Theory& Design .. 188
Numerical Methods for Eng ... 118
Officers in the Faculty ... 6
Operations Management Project .. 206
Ops& Safety Nuclear Reactors ... 177
Optical Communications ... 190
Phase Transformation Materials ... 203
PhD Eng Education Thesis ... 216
PhD in Constr Eco & Man ... 167
PhD in Arch & Planning .. 103
PhD in Chemical Eng ... 120
PhD in Civil Engineering .. 149
PhD in Materials Science .. 203
INDEX

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD in Electrical Eng</td>
<td>192</td>
</tr>
<tr>
<td>PhD in Eng Education</td>
<td>121</td>
</tr>
<tr>
<td>PhD in Engineering Management</td>
<td>215</td>
</tr>
<tr>
<td>PhD in Geomatics</td>
<td>103</td>
</tr>
<tr>
<td>Planning & Govt Systems</td>
<td>87</td>
</tr>
<tr>
<td>Planning Project A</td>
<td>86</td>
</tr>
<tr>
<td>Planning Project B</td>
<td>88</td>
</tr>
<tr>
<td>Planning Techniques I</td>
<td>90</td>
</tr>
<tr>
<td>Planning Techniques II</td>
<td>95</td>
</tr>
<tr>
<td>Planning Theory & Practice</td>
<td>86</td>
</tr>
<tr>
<td>Plants & Design</td>
<td>92</td>
</tr>
<tr>
<td>Plate & Shell Structures Part A</td>
<td>141</td>
</tr>
<tr>
<td>Plate & Shell Structures Part B</td>
<td>141</td>
</tr>
<tr>
<td>Postdoctoral Fellow</td>
<td>150</td>
</tr>
<tr>
<td>Practical Aspects of Catalysis</td>
<td>120</td>
</tr>
<tr>
<td>Practical Training</td>
<td>157</td>
</tr>
<tr>
<td>Pressure management in water distribution systems</td>
<td>148</td>
</tr>
<tr>
<td>Principles Of Wastewater Treatment & Wastewater Characterisation</td>
<td>135</td>
</tr>
<tr>
<td>Prizes</td>
<td>237</td>
</tr>
<tr>
<td>Professional Practice</td>
<td>92</td>
</tr>
<tr>
<td>Professional Status and Recognition of Degrees</td>
<td>246</td>
</tr>
<tr>
<td>Programming for Scientists and Engineers</td>
<td>210</td>
</tr>
<tr>
<td>Proj Mgmt & Systems Theory</td>
<td>161</td>
</tr>
<tr>
<td>Proj Plan & Implementation</td>
<td>162</td>
</tr>
<tr>
<td>Project Finance & Procurement</td>
<td>163</td>
</tr>
<tr>
<td>Project Implementation & Management</td>
<td>164</td>
</tr>
<tr>
<td>Project Risk Management</td>
<td>163</td>
</tr>
<tr>
<td>Prop Valuation Theory & Prac</td>
<td>165</td>
</tr>
<tr>
<td>Properties and Manufacture of Metallic Materials</td>
<td>203</td>
</tr>
<tr>
<td>Property Development</td>
<td>160</td>
</tr>
<tr>
<td>Property Development & Finance</td>
<td>164</td>
</tr>
<tr>
<td>Property Finance</td>
<td>161</td>
</tr>
<tr>
<td>Property Law</td>
<td>160</td>
</tr>
<tr>
<td>Property Portfolio Management</td>
<td>162</td>
</tr>
<tr>
<td>Property Studies II</td>
<td>156</td>
</tr>
<tr>
<td>Public Transport Policy and Regulation</td>
<td>140</td>
</tr>
<tr>
<td>Public Transport System Design and Management</td>
<td>140</td>
</tr>
<tr>
<td>Race, Culture & Identity In Africa</td>
<td>218</td>
</tr>
<tr>
<td>Radar System Modelling</td>
<td>184</td>
</tr>
<tr>
<td>Regional Planning Project</td>
<td>95</td>
</tr>
<tr>
<td>Regional Planning Theory</td>
<td>95</td>
</tr>
<tr>
<td>Regulatory & Legal Framework</td>
<td>87</td>
</tr>
<tr>
<td>Regulatory Reqs Nuclear Power</td>
<td>188</td>
</tr>
<tr>
<td>Regulatory Stds Nuclear Power</td>
<td>177</td>
</tr>
<tr>
<td>Repair & Rehabilitation of Concrete Structures</td>
<td>145</td>
</tr>
<tr>
<td>Research Comm & Methodology</td>
<td>115</td>
</tr>
<tr>
<td>Research Design and Methodology for Civil Engineers</td>
<td>148</td>
</tr>
<tr>
<td>Research Methodologies</td>
<td>100</td>
</tr>
<tr>
<td>Research Methodology</td>
<td>164</td>
</tr>
<tr>
<td>Research Methods for Urban Design</td>
<td>102</td>
</tr>
<tr>
<td>Research Project</td>
<td>98</td>
</tr>
<tr>
<td>Research Report</td>
<td>159</td>
</tr>
<tr>
<td>Researching & Assessing Heritage Resources</td>
<td>101</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Rules for Postgraduate Degrees</td>
<td>13</td>
</tr>
<tr>
<td>Safety of Special Structures</td>
<td>145</td>
</tr>
<tr>
<td>Scholarships/Awards</td>
<td>235</td>
</tr>
<tr>
<td>Sedimentation in Water & Wastewater Treatment</td>
<td>137</td>
</tr>
<tr>
<td>Selected Topics in Applied Sci</td>
<td>93</td>
</tr>
<tr>
<td>Sewage Sludge Treatment</td>
<td>138</td>
</tr>
<tr>
<td>Slope Stability</td>
<td>147</td>
</tr>
<tr>
<td>Software Defined Radio</td>
<td>192</td>
</tr>
<tr>
<td>Solvent Extraction</td>
<td>126</td>
</tr>
<tr>
<td>Space and Society</td>
<td>187</td>
</tr>
<tr>
<td>Space Applications for Sustainable Development</td>
<td>187</td>
</tr>
<tr>
<td>Space Mission Analysis and Design</td>
<td>187</td>
</tr>
<tr>
<td>Special Topic in Radar F</td>
<td>189</td>
</tr>
<tr>
<td>Special Topics in Radar A</td>
<td>184</td>
</tr>
<tr>
<td>Special Topics In Radar B</td>
<td>184</td>
</tr>
<tr>
<td>Special Topics In Radar C</td>
<td>184</td>
</tr>
<tr>
<td>Special Topics In Radar D</td>
<td>184</td>
</tr>
<tr>
<td>Special Topics In Radar E</td>
<td>185</td>
</tr>
<tr>
<td>Special Topics in Space Studies</td>
<td>188</td>
</tr>
<tr>
<td>Special Topics in Space Technology B</td>
<td>189</td>
</tr>
<tr>
<td>Special Topics in Space Technology C</td>
<td>192</td>
</tr>
<tr>
<td>Special Topics in Space Technology D</td>
<td>192</td>
</tr>
<tr>
<td>Stability & Design of Steel Structures</td>
<td>143</td>
</tr>
<tr>
<td>Statistical Signal Theory</td>
<td>190</td>
</tr>
<tr>
<td>Steady State Design of Biological Nutrient Removal Systems</td>
<td>138</td>
</tr>
<tr>
<td>Structural Concrete Properties & Practice</td>
<td>134</td>
</tr>
<tr>
<td>Structural Dynamics with Applications</td>
<td>143</td>
</tr>
<tr>
<td>Structural Impact</td>
<td>205</td>
</tr>
<tr>
<td>Structural Performance Assessment & Monitoring</td>
<td>145</td>
</tr>
<tr>
<td>Student Councils</td>
<td>7</td>
</tr>
<tr>
<td>Sustainability in Chemical Eng</td>
<td>117</td>
</tr>
<tr>
<td>Sustainable Development</td>
<td>112</td>
</tr>
<tr>
<td>Sustainable Practice</td>
<td>112</td>
</tr>
<tr>
<td>Systems Engineering Practice</td>
<td>206</td>
</tr>
<tr>
<td>Technology:Lab to Marketplace</td>
<td>119</td>
</tr>
<tr>
<td>Term dates</td>
<td>9</td>
</tr>
<tr>
<td>Terrain Analysis</td>
<td>89</td>
</tr>
<tr>
<td>The Activated Sludge System</td>
<td>137</td>
</tr>
<tr>
<td>Theory and Technology Studies</td>
<td>103</td>
</tr>
<tr>
<td>Theory & Design Nuclear Reactor</td>
<td>177</td>
</tr>
<tr>
<td>Thermodynamics for Nuclear Power Stations</td>
<td>176</td>
</tr>
<tr>
<td>Thesis Energy and Development Studies</td>
<td>216</td>
</tr>
<tr>
<td>Thesis Materials Engineering</td>
<td>215</td>
</tr>
<tr>
<td>Thesis Mechanical Engineering</td>
<td>215</td>
</tr>
<tr>
<td>Thesis Sustainable Energy Engineering</td>
<td>215</td>
</tr>
<tr>
<td>Total Quality Management in a Project Environment</td>
<td>162</td>
</tr>
<tr>
<td>Transport Demand Analysis and Project Assessment</td>
<td>149</td>
</tr>
<tr>
<td>Transport Modelling</td>
<td>149</td>
</tr>
<tr>
<td>Transport Planning and Engineering Methods Project</td>
<td>149</td>
</tr>
<tr>
<td>Transport Policy and Planning Case Study</td>
<td>141</td>
</tr>
<tr>
<td>Urban Design Representation</td>
<td>93</td>
</tr>
<tr>
<td>Urban Design Research Project</td>
<td>102</td>
</tr>
<tr>
<td>Urban Design Studio</td>
<td>101</td>
</tr>
</tbody>
</table>
Urban Design Theory I ... 101
Urban Design Theory II .. 102
Urban Economic Dev Processes ... 87
Urban Infrastructure .. 86
Urban Land Economics .. 161
Urban Transitions in the Global South 140
Web GIS ... 97
Wireless Data Network Converge ... 191